반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
AI 인공지능
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
APM Solution
애플리케이션 관리
URL 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
기술이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
무선 AP를 WNMS를 통해 올바르게 관리하는 방법
Helm과 Argo의 개념과 통합 활용법?!
강예원
2024.03.08
페이스북 공유하기
트위터 공유하기
링크드인 공유하기
블로그 공유하기
지속적인 성과를 내기 위한 첫걸음, '이것'부터 관리 하라?!
애플리케이션을 클라우드 네이티브 환경에서 효율적으로 관리하고 운영할 수 있는 플랫폼인 쿠버네티스(kubernetes)를 활용하는 기업들이 점점 더 늘어나고 있습니다.
이에 따라 효율적인 애플리케이션 관리를 통해 패키징 배포, 관리를 자동화하고 일관된 상태를 유지하는 것이 중요해지고 있습니다. 이번 글을 통해서는 애플리케이션 개발 및 도구 중 최근 많이 사용되는
Helm과 Argo
에 대해서 자세히 알아보겠습니다.
ㅣHelm의 등장
쿠버네티스를 활용한 애플리케이션 배포에 가장 기본이 되는 단위는 yaml 파일로, 주로 쿠버네티스 object(리소스)들을 정의하고 다루는데 활용됩니다.
쿠버네티스를 통해 애플리케이션을 배포하다 보면 비슷한 틀과 내용을 공유하고, 내부 값(configuration)만 일부 변경하는 작업을 하게 되는데요, 이 과정에서 애플리케이션마다 모두 yaml 파일을 만들어야 하나 보니 매우 번거로웠습니다.
위 이미지를 보면, A 애플리케이션은 정적 파일인 yaml을 오브젝트별(Service, Pod, ConfigMap)로 만들어서 생성하고 배포합니다. 그러다가 프로젝트의 확장에 따른 기능 추가로 인해 B와 C 애플리케이션으로 쪼개어 각각의 yaml 파일을 복사해서 사용합니다.
하지만, 팀 단위로 인프라가 확장될 경우는 어떻게 할까요? 개별 오브젝트에 대한 yaml 개별적으로 관리할 수 있을까요? 만약, 개별적으로 관리한다면 파일의 갯수와 코드량의 증가로 인해 개발자들은 매우 혼잡하게 될 것입니다.
이러한 문제점을 해결하기 위해, 쿠버네티스에서 애플리케이션을 배포하기 위해 사용되는 대표적인 패키징 툴인 Helm이 등장하게 됐습니다.
Helm을 활용하면 컨테이너 배포뿐 아니라 애플리케이션을 배포하기 위해 필요한 쿠버네티스 리소스를Node의 npm, Ubuntu의 APT, Mac의 Homebrew처럼 모두 패키지 형태로 배포할 수 있습니다.
ㅣHelm의 역사
Helm은 v1부터 v3에 이르기까지 아래와 같은 변화의 과정을 거쳐왔습니다.
Helm v1
◾ [2015년 11월] DEIS의 내부 프로젝트로 시작되어 KubeCon에서 발표
◾
[
2017년 04월] MS에서 DEIS를 인수
Helm v2
◾ [2016년 01월] Google 프로젝트에 합류
◾ [2016년 ~ 2018년] Helm v2 고도화, 2.15.0 릴리스 발표에서 v2 향후 계획 세부사항 공유
Helm v3
◾
[
2018년 06월] CNCF 프로젝트에 합류, MS, 삼성 SDS, IBM 및 Blood Orange의 구성원 등이 참여
◾
[
2019년 11월] 릴리스 발표
v2에서 v3로 고도화되면서 가장 눈에 띄는 변화는 Tiller(클러스터 내에서 Helm 패키지 및 배포 상태를 관리하는 서버 구성요소)의 제거입니다.
Helm v2에서는 클러스터에 Tiller를 설치하여, API Server와 REST*1 통신을 하고, Client와 gRPC*2 통신을 진행했었는데요, Helm v3부터는 Tiller가 제거되면서 Client에서 바로 REST 통신을 통해 API Server로 요청하는 방식으로 변경되었습니다.
그 외에도 Helm v3으로 업그레이드되면서 보안 취약점이 줄어들었으며, 설치 및 관리 과정이 단순화되었습니다. 또한 사용자에게 보다 더 안전하고 효율적인 배포 및 관리 환경을 제공할 수 있게 되었습니다.
*1 REST (Representational State Transfer) : 웹 기반 애플리케이션에서 자원을 관리하기 위한 아키텍처 스타일, 데이터를 고유한 URL로 표현하고 HTTP 메서드(GET, POST, PUT, DELETE 등)를 사용하여 해당 자원에 대한 행위를 정의함
*2 gRPC (google Remote Procedure Call) : 구글에서 개발한 오픈소스 프레임워크, 원격지에 있는 다른 시스템 또는 서버에 있는 함수를 호출하는 방식
ㅣHelm의 주요 개념
Helm은 애플리케이션을 배포해 주는 툴이라고 앞서 살펴봤는데요, Helm과 같이 사용되는 주요 개념들을 살펴보겠습니다.
◾
Helm Chart:
쿠버네티스 리소스를 하나로 묶은 패키지입니다. 이는 yaml 파일의 묶음(패키지)으로, 이 묶음 public 혹은 private registry에 push 해두고, helm 명령어를 통해 Helm Chart를 설치하여 쿠버네티스 리소스를 배포하는 역할을 합니다.
◾
Repository:
Helm Chart 들의 저장소
◾
Release:
kubernetes Cluster에서 구동되는 차트 인스턴스이며, Chart는 여러 번 설치되고 새로운 인스턴스는 Release로 관리됩니다.
ㅣHelm의 주요 기능
Helm의 두 가지 주요 기능을 살펴보겠습니다.
[1] Helm Chart를 통한 손쉬운 배포
Helm을 사용하면 어떻게 되는지 그림으로 살펴보겠습니다.
개발 클러스터가 있고 앱 2개를 배포한다고 가정했을 때, Helm Chart Template을 만들면 변수 처리를 통해 yaml 파일을 하나하나 수정할 필요 없습니다. kubectl 명령어를 통해 yaml 파일의 동적 값을 치환하여 템플릿 형태로 편리하게 배포할 수 있다는 장점이 있습니다.
[2] Helm Package를 이용한 오픈소스 설치 및 배포
Helm을 통해서 쿠버네티스에서 가동할 수 있는 아래와 같은 다양한 오픈소스들의 제품들을 쉽게 설치/배포할 수 있습니다.
위제품들 외에도 Helm Chart는 총 14,376개의 패키지와 281,373개의 릴리스를 오픈소스로 제공합니다. 이를 통해 사용자들은 자신의 요구에 맞는 가장 적합한 솔루션을 선택하여 개발할 수 있습니다. 또한 많은 사용자들이 검증하고 사용함에 따라 안정성 있는 운영도 가능하죠.
다양한 Helm Chart 패키지는 커스터마이징이 가능한 경우가 많은데요, 사용자는 필요에 따라 구성을 조정하고 수정해서 사용할 수 있는 장점이 있습니다.
다음으로는 Helm 못지않게 많이 활용되는 ArgoCD에 대해서 살펴보겠습니다.
ㅣ ArgoCD란?!
기존의 kubernetes 애플리케이션을 배포하고 관리하는 방식은 수동적이었습니다. yaml 파일을 직접 편집하고, kubectl로 변경사항을 클러스터에 적용하는 수동 배포 방식은 실수를 많이 유발했죠.
또한 여러 개발자나 팀이 각자의 방식대로 배포 및 관리를 수행하는 경우, 클러스터 상태의 일관성이 저하되었는데요. 이로 인해 개발 및 운영팀 간의 협업이 어렵고 생산성이 감소되는 문제가 발생하기도 했습니다.
이러한 기존 접근 방식에 대한 대안으로 GitOps가 탄생했는데요, GitOps는 Git 저장소를 사용하는 소프트웨어 배포 접근 방식입니다. GitOps는 인프라와 소프트웨어를 함께 관리함으로써, Git 버전 관리 시스템과 운영환경 간의 일관성을 유지할 수 있도록 합니다.
ArgoCD는 GitOps를 구현하기 위한 도구 중 하나로 kubernetes 애플리케이션의 자동 배포를 위한 오픈소스 도구입니다. kubernetes 클러스터에 배포된 애플리케이션의 CI/CD 파이프라인에서 CD 부분을 담당하며, Git 저장소에서 변경사항을 감지하여 자동으로 kubernetes 클러스터에 애플리케이션을 배포할 수 있습니다.
kubernetes 애플리케이션 배포 과정을 살펴보겠습니다.
① 사용자가 개발한 내용을 Git 저장소에 Push(이때, kubernetes 배포 방식인 Helm 배포 방식의 구조로 Git 저장소에 Push 할 수 있습니다.)
② ArgoCD가 Git 저장소의 변경 상태를 감지
③ Git 저장소의 변경된 내용을 kubernetes에 배포하여 반영
ㅣ ArgoCD의 주요 기능
◾ 애플리케이션을 지정된 환경에 자동으로 배포
◾
멀티 클러스터 관리기능 제공
◾
OCI, OAuth2, LDAP 등 SSO 연동
◾
멀티 테넌시와 자체적인 RBAC 정책 제공
◾
애플리케이션 리소스 상태 분석
◾
애플리케이션 자동 및 수동 동기화 기능 제공
◾
Argo가 관리하고 있는 쿠버네티스 리소스 시각화 UI 제공
◾
자동화 및 CI 통합을 위한 CLI 제공
위 내용은 ArgoCD가 제공하는 주요 기능을 나열한 것인데요, 이 중에서도 대표적인 다섯 가지 기능에 대해서 자세히 살펴보겠습니다.
① 쿠버네티스 모니터링
ArgoCD는 쿠버네티스를 항상 추적하고 있다가 저장소의 변경사항이 감지되면, 자동으로 클러스터의 상태를 저장소의 상태와 동기화합니다. 또한 문제가 생기면 이전 상태로 롤백 할 수 있으며, 이를 통해 시스템 복구 및 문제 해결을 용이하게 합니다.
② 멀티 클러스터 관리
다중 클러스터 환경에서도 배포를 관리할 수 있어 복잡한 인프라 환경에서의 효율적인 작업을 가능하게 합니다.
③ ArgoCD 대시보드
Argo에서는 클러스터 상태를 효과적으로 관리하고 모니터링할 수 있는 대시보드를 제공합니다.
ArgoCD 대시보드를 통해 애플리케이션의 실시간 상태와 동기화 상태와 같은 전체적인 배포 파이프라인을 자동화하여 시각적으로 확인할 수 있고, 롤백 및 이력 추적 기능도 동시에 제공하고 있습니다.
④ 안전한 인증 및 권한 관리
역할 기반 액세스 제어(RBAC) 및 권한 제어기능을 통해 민감한 정보에 대한 접근을 제어할 수 있습니다.
⑤ GitOps 지원
ArgoCD는 GitOps 방법론을 따르므로 애플리케이션의 배포를 Git Repository와 동기화할 수 있습니다. 이를 통해 코드와 인프라의 일관성을 유지하고 변경사항을 추적할 수 있습니다.
ㅣ Helm과 ArgoCD의 통합 활용 프로세스
Helm과 Argo를 함께 사용하면 개발, 테스트, 배포 프로세스를 효과적으로 관리할 수 있습니다. Helm으로 애플리케이션을 패키징하고 버전을 관리하며, Argo를 활용하여 GitOps 워크플로우를 통해 지속적인 통합 및 배포를 자동화할 수 있습니다.
① develop:
Helm을 사용하여 애플리케이션을 Helm Chart로 패키징 합니다. 이후 개발된 Helm Chart를 저장하기 위한 Git 저장소를 설정합니다. ArgoCD에서 저장한 저장소를 특정 배포 대상 Kubernetes 클러스터와 연결하여, Git 저장소의 변경사항을 감지하고 새로운 배포를 시작하여 클러스터에 적용합니다.
② git push:
개발자가 로컬 저장소 내용을 원격 저장소에 배포합니다.
③ Observe(GitOps):
ArgoCD는 Git 저장소의 변경 사항을 감지하여, 변경사항이 발생하면 새로운 버전의 애플리케이션을 배포하여 자동화 및 일관성을 유지합니다.
④ 운영/테스트/개발
ㅣ마무리
오늘 함께 살펴본 Helm과 ArgoCD 두 가지 강력한 도구를 함께 이용한다면 CI/CD 통합, 버전 관리, 자동화 등의 이점을 활용해서 kubernetes 환경에서 애플리케이션을 더 효율적으로 관리할 수 있습니다.
한편 애플리케이션을 효과적으로 개발하는 것도 중요하지만, kubernetes 환경의 프로세스를 실시간 모니터링하고 추적하여 관리하는 것도 매우 중요합니다.
브레인즈컴퍼니의 kubernetes 모니터링 솔루션 Zenius-K8s는 다양한 CI/CD 도구를 이용하여 개발한 kubernetes 애플리케이션의 전체 클러스터 및 구성요소에 대한 상세 성능 정보를 모니터링하고, 리소스를 추적함으로써 시스템의 안정성과 성능을 높여주고 있습니다.
#쿠버네티스
#Helm
#Argo
#K8s
#kubernetes
#ArgoCD
#ZeniusK8s
강예원
프리세일즈팀
고객에게 특화된 Zenius를 제공하기 위해, 비즈니스 요구에 알맞은 전략적 컨설팅을 제안합니다.
필진 글 더보기
목록으로
추천 콘텐츠
이전 슬라이드 보기
Java APM 기반 기술에 대한 간략한 설명
Java APM 기반 기술에 대한 간략한 설명
몇 년 전부터 미국 실리콘밸리에서 불어온 스타트업 광풍이 인플레이션과 경기 침체가 동시에 예상되는 최악의 전망 속에서 조금 사그러드는 모습입니다. 그러나 빠른 속도로 퍼지기 시작한 IT 관련 유행들은 아마 꽤 오랜 시간 우리들 근처에 남아 그 영향이 지속되지 않을까 예상해봅니다. 그 중 한 부분을 차지하는 것이 새로운 혹은 인기가 급상승한 Go, Python, R, Julia, Kotlin, Rust, Swift 등의 컴퓨터 언어들입니다. 이렇게 많은 언어들이 새로 등장해 번쩍번쩍하는 장점을 뽐내고 있는 와중에도, 아직 세상의 많은 부분, 특히 ‘엔터프라이즈 IT’라 불리는 영역에서 여전히 가장 많이 사용되는 것은 Java입니다. 절대적이지는 않지만 컴퓨터 언어의 인기 순위 차트인 TIOBE 인덱스에 따르면, 2022년 6월 현재도 Java의 인기는 Python, C의 뒤를 잇는 3위입니다. Java 역시 Java 9부터는 십 수년간 고수하던 백워드 컴패티빌리티 정책을 포기하고 여러가지 반짝거리는 장점을 받아들이면서 버전업을 계속해, 올해 9월에는 Java 19가 나올 예정입니다. 그러나 아직도 우리나라 ‘엔터프라이즈 IT’에서 가장 많이 쓰이는 버전, 그리고 작년까지는 세계에서 가장 많이 쓰이는 버전은 Java 8이었습니다. 이렇게 많은 Java 어플리케이션의 성능을 모니터링하고 관리할 수 있는 솔루션을 통상적으로 APM(Application Performance Management)이라고 합니다. 위에서 서술한 것처럼 다른 컴퓨터 언어들의 인기가 올라가고 사용되는 컴퓨터 언어가 다양해지면서 많은 APM 제품들이 Java외의 다른 컴퓨터 언어로 작성된 어플리케이션도 지원하는 경우가 늘어나고 있으나, 이 글에서는 APM을 Java 어플리케이션의 성능을 모니터링하고 관리할 수 있는 솔루션으로 한정하도록 하겠습니다. 어플리케이션의 성능을 보다 깊이 모니터링하는데 필수적인 것이 Trace[i]입니다. Trace는 어플리케이션이 실행되는 과정에 중요하다고 생각되는 부분에서 중요하다고 생각되는 어플리케이션의 상태를 기록으로 남긴 것입니다. 전통적인 어플리케이션에서는 실행 Thread를 따라가면서 순차적인 Trace가 남게 되고 유행에 맞는 MSA(Micro-Service Architecture) 어플리케이션에서는 서로 연관됐지만 직선적이지는 않은 형태의 Trace가 남게 됩니다. 이러한 Trace를 수집하고 추적하고 분석하는 것이 APM의 주요 기능 중 하나입니다. 그런데, 여기서 문제가 하나 생깁니다. Trace는 누가 남길 것인가 하는 문제입니다. 개발 리소스가 충분하고 여유가 있는 경우, 개발시 성능에 대한 부분에 신경을 써서 개발자들이 Trace를 남기며 이를 분석하고 최적화하는 것이 정례화, 프로세스화 돼있겠지만, 많은 경우 개발 리소스를 보다 중요한 목표 달성을 위해 투입하는 것도 모자랄 지경인 것이 현실입니다. 아무리 분석 툴인 APM이 좋아도, 분석할 거리가 되는 Trace가 없으면 무용지물이 돼 버립니다. 그래서 APM에는 미리 정해진 중요한 시점에 어플리케이션에서 아무 것도 하지 않더라도 자동으로 Trace를 남기도록 하는 기능이 필수적으로 필요합니다. Java 어플리케이션의 경우 이러한 기능은 Java Bytecode Instrumentation이라고 하는 기반 기술을 사용해 구현됩니다. 서론이 매우 길어졌지만, 이 글에서는 Java Bytecode Instrumentation에 대해 조금 상세히 살펴보도록 하겠습니다. Java Bytecode Instrumentation을 명확히 이해하려면, 먼저 Java가 아니라 C, C++, Rust등의 언어들로 작성된 프로그램이 어떤 과정을 거쳐서 실행되는가, 그리고 Java 프로그램은 어떤 과정을 거쳐서 실행되는가를 살펴보는 것이 도움이 됩니다. Java가 세상에 나오기 이전에는 ‘컴퓨터 학원’이나 고등학교 ‘기술’ 과목, 그리고 대학의 ‘컴퓨터 개론’ 등에 반드시 이런 내용이 포함돼 있었지만 요즘은 그렇지도 않은 것 같습니다. 컴퓨터에서 프로그램을 실행시키는 것은 CPU, 즉 Central Processing Unit입니다. 지금 이 글을 작성하고 있는 컴퓨터의 CPU는 Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz입니다. CPU는 메모리의 프로그램이 있는 영역을 읽어 들여, 미리 정해진 값에 따라 정해진 동작을 수행하게 됩니다. 이때 어떤 값이 어떤 동작을 수행하는지 규정해 놓은 것을 Machine Language라고 합니다. Machine Language는 100% 숫자의 나열이므로 이를 좀더 사람이 읽기 쉬운 형태로 1:1 매핑 시킨 것이 Assembly Language입니다. (그렇다고 읽기가 많이 쉬워지지는 않습니다.) 이 글에서는 이 두 단어를 구분없이 혼동해 사용합니다. C, C++, 그리고 나온 지 벌써 10년이나 된 Go, 요즘 인기가 계속 상승하고 있는 Rust 등의 언어로 작성된 프로그램은, 이들 언어로 작성된 소스 코드를 Machine Language로 미리 변환해서[ii] 실행 파일을 만들고 이를 실행하게 됩니다. 이 변환을 수행하는 것을 Compile한다라고 하고 이 변환을 수행하는 프로그램을 Compiler라고 부릅니다. 한편, 소스 코드를 완전히 Machine Language로 변환시킨 실행 파일을 실행하는 것이 아니라 Interpreter라 불리우는 프로그램이 소스 코드를 읽으면서 그 의미에 맞게 동작을 수행시키는 언어들도 있습니다. ‘스크립트 언어’라 불리는 bash, Perl, PHP, Ruby, Python 등이 이에 해당되면, 요즘은 잘 쓰이지 않지만 그 옛날 Bill Gates가 직접 Interpreter를 만들기도 했던 BASIC 등이 이에 해당합니다. 본론으로 돌아가보겠습니다. 그렇다면, Java 프로그램은 어떤 방식으로 실행이 되는가? 기본적으로는 Interpreter 방식이라고 생각해도 이 글의 주제인 Java Bytecode Instrumentation을 이해하는 데는 무리가 없습니다.[iii] 여기에 더해 Java의 실행 방식에는 몇 가지 큰 특징이 있습니다. 첫째로, Java는 소스 파일을 직접 읽어 들이면서 실행하는 것이 아니라 소스 파일을 미리 변환시킨 Java Class File을 읽어 들이면서 실행합니다. 하나의 Java Class File에는 하나의 Java Class 내용이 모두 포함됩니다. 즉, Class의 이름, public/private/internal 여부, 부모 클래스, implement하는 interface 등의 Class에 대한 정보, Class의 각 필드들의 정보, Class의 각 메서드[iv]들의 정보, Class에서 참조하는 심볼과 상수들, 그리고 이 글에서 가장 중요한 Java로 작성된 각 메서드의 내용을 Java Bytecode 혹은 JVM Bytecode라고 하는 중간 형태의 수열로 변환시킨 결과 등이 Java Class File에 들어가게 됩니다. 이 Java Bytecode는 실제 실행 환경인 CPU 및 Machine 아키텍처에 무관합니다. 똑같은 Java 소스 코드를 Windows에서 Compile해 Java Class File로 만들건, Linux에서 Compile해 Java Class File로 만들건 그 내용은 100% 동일하게 되고 이 점은 C, C++, Rust 등 Compiler 방식의 언어와 큰 차이점입니다. Java의 가장 큰 마케팅 캐치프레이즈 “Write Once, Run Anywhere”는 이를 표현한 것입니다. 둘째, Java Bytecode는 일반적인 CPU의 Machine Language와 많은 유사점을 지닙니다.[v] 어찌 보면 Java Bytecode는 실제 존재하지는 않지만 동작하는 가상의 CPU의 Machine Language라고 볼 수 있는 것입니다. 이러한 이유에서 Java Class File을 읽어 들여 실행시키는 프로그램을 JVM이라고 (Java Virtual Machine) 부릅니다. Java 소스 파일을 Java Class File로 변환시키는 프로그램을 Java Compiler라고 부르며, 가장 많이 쓰는 Java Compiler는 JDK(Java Development Kit)에 포함된 javac라고 하는 프로그램입니다.[vi] JVM은 JDK에 포함된 java라고 하는 프로그램을 가장 많이 씁니다. 한편 사용 빈도는 그렇게 높지 않지만, Java Class File을 사람이 알아볼 수 있는 형태로 변환해서 그 내용을 보고 싶은 경우도 있습니다. 이런 일을 하는 프로그램을 Java Bytecode Disassembler[vii]라고 부르며, JDK에는 Java Bytecode Disassembler인 javap가 포함돼 있습니다. 혹은, Eclipse나 Intellij IDEA 같은 IDE에서 Java Class File을 로드하면 사람이 알아볼 수 있는 형태로 변환해 보여줍니다. Java Bytecode의 실제 예를 한번 살펴보도록 하겠습니다. 설명을 간단히 하기 위해, 클래스나 메서드 선언 등은 다 제외하고, 오직 메서드의 내용에만 집중하면, System.out.println(“Hello, World.”); 라는 Java 프로그램은 다음과 같은 Java Bytecode로 변환됩니다. (전통적으로 16진수로 표시합니다.) b2 00 0b 12 09 b6 00 0f b1 이를 javap를 사용해, 혹은 JVM Reference[viii]를 보고 좀더 사람이 보기 쉬운 형태로 표현하면 다음과 같습니다. 0: getstatic #11 // Field java/lang/System.out:Ljava/io/PrintStream; 3: ldc #9 // String Hello World 5: invokevirtual #15 // Method java/io/PrintStream.println: (Ljava/lang/String;)V 8: return JVM Reference의 Chapter 7을 참고하면, Java Bytecode를 javap의 결과에 어떻게 대응되는지를 알 수 있습니다. javap의 결과를 조금 더 살펴봅시다. 먼저 콜론 앞의 숫자는 인스트럭션의 offset으로서 Bytecode 시퀀스의 0번째, 3번째, 5번째, 8번째를 의미합니다. 0번째의 getstatic은 그 다음 숫자에 해당하는 필드를 스택의 맨 위에 저장하도록 합니다. 3번째의 ldc는 “Hello, World”라는 상수값을 스택의 맨 위에 저장하도록 합니다. 5번째의 invokevirtual은 println 메서드를 호출하고, 8번째의 return은 메서드에서 리턴해 호출한 곳으로 실행을 넘깁니다. Java 프로그램은 (정확히는 Java 소스 코드로 작성된 프로그램을 Compile한 결과) 통상적으로 많은 수의 Java Class File로 이뤄집니다. JVM은 이러한 Java Class File을 한꺼번에 읽어 들이는 것이 아니라 실행을 하다가 필요한 순간이 되면 그 때 읽어 들입니다. JVM은 이 로딩 과정에 사용자가 개입할 여지를 남겨 뒀는데, 이것이 Java Bytecode Instrumentation입니다. 이에 대한 개요는 https://docs.oracle.com/javase/8/docs/api/java/lang/instrument/package-summary.html에 설명돼 있습니다. 요약해서 설명하면 다음과 같습니다. (1)사용자는 미리 정해진 규약대로 Java Agent라는 프로그램을 작성하고 이를 JVM 실행시에 옵션으로 명기합니다. (2)JVM은 Java Class File을 읽어 들여서 JVM이 처리하기 좋은 형태로 저장하기 전에, 그 파일 내용을 Java Agent의 ClassFileTransformer 클래스의 transform 메서드[ix]에 전달합니다. (3)JVM은 Java Class File의 원래 내용이 아니라 (2)의 메서드가 반환하는 결과를 저장하고 실행합니다. 이 과정을 Java Bytecode Instrumentation이라고 합니다. 사용자는 Java Bytecode Instrumentation을 구현해, 즉 Java Agent를 잘 작성헤 무엇이든 원하는 바를 달성할 수 있는 것입니다![x] 이러한 Java Bytecode Instrumentation은 APM, 그리고 Aspect-Oriented Programming의 기반 기술이 됩니다. 우리나라에서 Java로 프로그래밍을 한다고 하면 누구나 다 알고 있을 것 같은 Spring Core의 핵심 요소 중의 하나가 Aspect-Oriented Programming입니다. 예를 들어 Spring에서 @Transaction 이라고 annotation된 메서드가 있으면, Spring은 그 메서드의 맨 처음에 transaction을 시작하는 코드, 정상적으로 return하기 직전에는 transaction을 commit하는 코드, 그리고 익셉션에 의해 메서드를 빠져 나가기 직전에는 transaction을 rollback하는 코드를 삽입해 주게 되는데 이를 Java Bytecode Instrumentation을 이용해 구현하는 것입니다. 그럼, Java Agent에 거의 무조건적으로 필요한 기능은 무엇일까요? Java Agent는 Java Class File 내용을 그대로 전달받기 때문에 이를 해석할 수 있어야 무언가를 할 수 있습니다. 불행히도, java 스탠다드 라이브러리에는 Java Bytecode를 직접 다루는 기능은 없습니다.[xi] 그래서 de facto standard로 사용되는 것이 asm이라는 라이브러리입니다. 이 라이브러리는 수많은 java 라이브러리와 어플리케이션에 포함돼 있습니다. 그러나 asm이 훌륭한 라이브러리이긴 하지만, 이를 직접 사용하려면 각 상황에 맞게 코드를 삽입하는 프로그램을 작성해서 사용해야 하므로 자유도가 떨어집니다. 그래서 Zenius APM에서는 asm을 사용하되 삽입될 코드를 설정 파일에서 지정할 수 있는 suji(Simple Universal Java Instrumentor)[xii]라고 이름 붙인 라이브러리를 직접 만들어 사용하고 있습니다. suji를 사용하면 yaml 형식의 설정 파일에서, 어떤 클래스의 어떤 메서드의 어느 부분에 삽입할 것인지에 대한 조건과 삽입될 코드를 yaml의 list 형태로 지정하는 것만으로 (이는 Lisp와 비슷한 방식으로, 이렇게 하면 파싱 과정을 생략하면서 쉽게 코드를 넣을 수 있습니다.) Java Bytecode Instrumentation을 손쉽게 처리할 수 있습니다. 예를 들어, Zenius APM에서 JDBC getConnection을 처리하기 위해서 다음과 같은 부분이 설정 파일에 포함돼 있습니다. JDBC.DataSource.getConnection: IsEnabled: true ClassChecker: [ HasInterface, javax/sql/DataSource ] MethodName: getConnection IsStatic: false IsPublic: true IsDeclared: false ReturnType: Ljava/sql/Connection; Locals: [ Ljava/lang/Object;, Ljava/lang/Object; ] AtEntry: - [ INVOKE, dataSourceGetConnection, l1, [] ] AtExit: - [ INVOKE, poolGetConnectionEnd, l2, [ l1, ^r, true ] ] - [ LOAD, l2 ] - [ CAST, Ljava/sql/Connection; ] - [ STORE, ^r ] AtExceptionExit: - [ INVOKE, endByException, null, [ l1, ^e ] ] 간략하게 설명하면, Class가 만약 javax.sql.DataSource를 implement하고 메서드가 스태틱이 아니고 public이면서 java.sql.Connection을 리턴하는 getConnection이라는 이름을 가진 경우에 메서드 시작 시, 리턴 시, 그리고 익셉션에 의해 메서드를 나갈 때 위의 예제에 규정된 코드를 삽입하라는 의미입니다. 이상으로 Java Bytecode Instrumentation에 대한 간략한 설명을 마칩니다. 다음에는 실제로 APM이 중점적으로 추적하고 분석하는 것은 어떤 것들인가에 대해 설명하겠습니다. -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- [i] Sridharan, Distributed Systems Observability, O’Reilly, 2018의 Chapter 4. The Three Pillars of Observability 참조. 번역본은 없는 듯합니다. [ii] 이 외에 여러가지 과정을 거치지만 이 글의 목적과는 무관하므로 과감하게, 자세한 설명은 생략합니다. [iii] 실제로는 Java 프로그램이 100% 이렇게 interpret되어 실행되는 것은 아닙니다. 특정 메쏘드 혹은 메쏘드의 일부분이 자주 실행돼 interpret하는 것보다 미리 컴퓨터(=CPU)가 바로 실행할 수 있는 형태(=Machine Language)로 변환(=compile)해 놓는 것이 더 낫다고 JVM이 판단하는 경우, 미리 이런 변환 과정을 한번 거쳐 그 결과를 기억해 놓고, 그 기억된 결과를 컴퓨터(=CPU)가 바로 실행합니다. 이렇게 변환하는 과정을 Just-In-Time Compile 혹은 JIT라고 합니다. 또 이 때문에 JVM을 단순한 interpreter로 부를 수는 없는 것입니다. [iv] 국립국어원은 메서드가 맞는 표기라고 합니다. [v] 물론 많은 차이점도 지닙니다. (1) JVM은 register가 존재하지 않고 오로지 stack에만 의존한다. (2) JVM은 Class, Method의 개념을 포함하고 있지만 일반적인 범용 CPU에는 그런 상위 개념은 없습니다. [vi] 보통 IDE를 써서 개발을 하기 때문에, javac를 직접 사용하거나 Java Class File을 직접 다룰 일은 잘 없고, jar 파일이 이 글을 읽는 여러분에게 훨씬 더 익숙할 지도 모릅니다. Jar 파일은 그냥 zip으로 압축된 파일이니 그 압축을 한번 풀어 보길 바란다. 확장자가 class인 수많은 파일을 찾을 수 있을 것입니다. [vii] Assembly는 Assemble의 명사형이며, Assemble의 반대말은 Disassemble입니다. [viii] JVM에 대한 모든 것은 The Java Virtual Machine Specification에 나와 있습니다. 이 중 'Chapter 6. The Java Virtual Machine Instruction Set'를 참고하면 각각의 instruction에 대해 상세히 알 수 있습니다. [ix] https://docs.oracle.com/javase/8/docs/api/java/lang/instrument/ClassFileTransformer.html#transform-java.lang.ClassLoader-java.lang.String-java.lang.Class-java.security.ProtectionDomain-byte:A- [x] 쉽다고는 하지 않았습니다. 또 몇가지 제약 사항은 있습니다. [xi] 참고로 최근에는 asm을 대체할 수 있는 기능을 스탠다드 라이브러리에 넣을 계획이 진행되고 있습니다. https://openjdk.org/jeps/8280389 [xii] 명명이 아이돌 그룹 출신 모 여배우와 관계가 아주 없지는 않음을 조심스럽게 밝혀 둡니다.
2022.08.04
다음 슬라이드 보기