반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
AI 인공지능
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
APM Solution
애플리케이션 관리
URL 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
기술이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
무선 AP를 WNMS를 통해 올바르게 관리하는 방법
Helm과 Argo의 개념과 통합 활용법?!
강예원
2024.03.08
페이스북 공유하기
트위터 공유하기
링크드인 공유하기
블로그 공유하기
지속적인 성과를 내기 위한 첫걸음, '이것'부터 관리 하라?!
애플리케이션을 클라우드 네이티브 환경에서 효율적으로 관리하고 운영할 수 있는 플랫폼인 쿠버네티스(kubernetes)를 활용하는 기업들이 점점 더 늘어나고 있습니다.
이에 따라 효율적인 애플리케이션 관리를 통해 패키징 배포, 관리를 자동화하고 일관된 상태를 유지하는 것이 중요해지고 있습니다. 이번 글을 통해서는 애플리케이션 개발 및 도구 중 최근 많이 사용되는
Helm과 Argo
에 대해서 자세히 알아보겠습니다.
ㅣHelm의 등장
쿠버네티스를 활용한 애플리케이션 배포에 가장 기본이 되는 단위는 yaml 파일로, 주로 쿠버네티스 object(리소스)들을 정의하고 다루는데 활용됩니다.
쿠버네티스를 통해 애플리케이션을 배포하다 보면 비슷한 틀과 내용을 공유하고, 내부 값(configuration)만 일부 변경하는 작업을 하게 되는데요, 이 과정에서 애플리케이션마다 모두 yaml 파일을 만들어야 하나 보니 매우 번거로웠습니다.
위 이미지를 보면, A 애플리케이션은 정적 파일인 yaml을 오브젝트별(Service, Pod, ConfigMap)로 만들어서 생성하고 배포합니다. 그러다가 프로젝트의 확장에 따른 기능 추가로 인해 B와 C 애플리케이션으로 쪼개어 각각의 yaml 파일을 복사해서 사용합니다.
하지만, 팀 단위로 인프라가 확장될 경우는 어떻게 할까요? 개별 오브젝트에 대한 yaml 개별적으로 관리할 수 있을까요? 만약, 개별적으로 관리한다면 파일의 갯수와 코드량의 증가로 인해 개발자들은 매우 혼잡하게 될 것입니다.
이러한 문제점을 해결하기 위해, 쿠버네티스에서 애플리케이션을 배포하기 위해 사용되는 대표적인 패키징 툴인 Helm이 등장하게 됐습니다.
Helm을 활용하면 컨테이너 배포뿐 아니라 애플리케이션을 배포하기 위해 필요한 쿠버네티스 리소스를Node의 npm, Ubuntu의 APT, Mac의 Homebrew처럼 모두 패키지 형태로 배포할 수 있습니다.
ㅣHelm의 역사
Helm은 v1부터 v3에 이르기까지 아래와 같은 변화의 과정을 거쳐왔습니다.
Helm v1
◾ [2015년 11월] DEIS의 내부 프로젝트로 시작되어 KubeCon에서 발표
◾
[
2017년 04월] MS에서 DEIS를 인수
Helm v2
◾ [2016년 01월] Google 프로젝트에 합류
◾ [2016년 ~ 2018년] Helm v2 고도화, 2.15.0 릴리스 발표에서 v2 향후 계획 세부사항 공유
Helm v3
◾
[
2018년 06월] CNCF 프로젝트에 합류, MS, 삼성 SDS, IBM 및 Blood Orange의 구성원 등이 참여
◾
[
2019년 11월] 릴리스 발표
v2에서 v3로 고도화되면서 가장 눈에 띄는 변화는 Tiller(클러스터 내에서 Helm 패키지 및 배포 상태를 관리하는 서버 구성요소)의 제거입니다.
Helm v2에서는 클러스터에 Tiller를 설치하여, API Server와 REST*1 통신을 하고, Client와 gRPC*2 통신을 진행했었는데요, Helm v3부터는 Tiller가 제거되면서 Client에서 바로 REST 통신을 통해 API Server로 요청하는 방식으로 변경되었습니다.
그 외에도 Helm v3으로 업그레이드되면서 보안 취약점이 줄어들었으며, 설치 및 관리 과정이 단순화되었습니다. 또한 사용자에게 보다 더 안전하고 효율적인 배포 및 관리 환경을 제공할 수 있게 되었습니다.
*1 REST (Representational State Transfer) : 웹 기반 애플리케이션에서 자원을 관리하기 위한 아키텍처 스타일, 데이터를 고유한 URL로 표현하고 HTTP 메서드(GET, POST, PUT, DELETE 등)를 사용하여 해당 자원에 대한 행위를 정의함
*2 gRPC (google Remote Procedure Call) : 구글에서 개발한 오픈소스 프레임워크, 원격지에 있는 다른 시스템 또는 서버에 있는 함수를 호출하는 방식
ㅣHelm의 주요 개념
Helm은 애플리케이션을 배포해 주는 툴이라고 앞서 살펴봤는데요, Helm과 같이 사용되는 주요 개념들을 살펴보겠습니다.
◾
Helm Chart:
쿠버네티스 리소스를 하나로 묶은 패키지입니다. 이는 yaml 파일의 묶음(패키지)으로, 이 묶음 public 혹은 private registry에 push 해두고, helm 명령어를 통해 Helm Chart를 설치하여 쿠버네티스 리소스를 배포하는 역할을 합니다.
◾
Repository:
Helm Chart 들의 저장소
◾
Release:
kubernetes Cluster에서 구동되는 차트 인스턴스이며, Chart는 여러 번 설치되고 새로운 인스턴스는 Release로 관리됩니다.
ㅣHelm의 주요 기능
Helm의 두 가지 주요 기능을 살펴보겠습니다.
[1] Helm Chart를 통한 손쉬운 배포
Helm을 사용하면 어떻게 되는지 그림으로 살펴보겠습니다.
개발 클러스터가 있고 앱 2개를 배포한다고 가정했을 때, Helm Chart Template을 만들면 변수 처리를 통해 yaml 파일을 하나하나 수정할 필요 없습니다. kubectl 명령어를 통해 yaml 파일의 동적 값을 치환하여 템플릿 형태로 편리하게 배포할 수 있다는 장점이 있습니다.
[2] Helm Package를 이용한 오픈소스 설치 및 배포
Helm을 통해서 쿠버네티스에서 가동할 수 있는 아래와 같은 다양한 오픈소스들의 제품들을 쉽게 설치/배포할 수 있습니다.
위제품들 외에도 Helm Chart는 총 14,376개의 패키지와 281,373개의 릴리스를 오픈소스로 제공합니다. 이를 통해 사용자들은 자신의 요구에 맞는 가장 적합한 솔루션을 선택하여 개발할 수 있습니다. 또한 많은 사용자들이 검증하고 사용함에 따라 안정성 있는 운영도 가능하죠.
다양한 Helm Chart 패키지는 커스터마이징이 가능한 경우가 많은데요, 사용자는 필요에 따라 구성을 조정하고 수정해서 사용할 수 있는 장점이 있습니다.
다음으로는 Helm 못지않게 많이 활용되는 ArgoCD에 대해서 살펴보겠습니다.
ㅣ ArgoCD란?!
기존의 kubernetes 애플리케이션을 배포하고 관리하는 방식은 수동적이었습니다. yaml 파일을 직접 편집하고, kubectl로 변경사항을 클러스터에 적용하는 수동 배포 방식은 실수를 많이 유발했죠.
또한 여러 개발자나 팀이 각자의 방식대로 배포 및 관리를 수행하는 경우, 클러스터 상태의 일관성이 저하되었는데요. 이로 인해 개발 및 운영팀 간의 협업이 어렵고 생산성이 감소되는 문제가 발생하기도 했습니다.
이러한 기존 접근 방식에 대한 대안으로 GitOps가 탄생했는데요, GitOps는 Git 저장소를 사용하는 소프트웨어 배포 접근 방식입니다. GitOps는 인프라와 소프트웨어를 함께 관리함으로써, Git 버전 관리 시스템과 운영환경 간의 일관성을 유지할 수 있도록 합니다.
ArgoCD는 GitOps를 구현하기 위한 도구 중 하나로 kubernetes 애플리케이션의 자동 배포를 위한 오픈소스 도구입니다. kubernetes 클러스터에 배포된 애플리케이션의 CI/CD 파이프라인에서 CD 부분을 담당하며, Git 저장소에서 변경사항을 감지하여 자동으로 kubernetes 클러스터에 애플리케이션을 배포할 수 있습니다.
kubernetes 애플리케이션 배포 과정을 살펴보겠습니다.
① 사용자가 개발한 내용을 Git 저장소에 Push(이때, kubernetes 배포 방식인 Helm 배포 방식의 구조로 Git 저장소에 Push 할 수 있습니다.)
② ArgoCD가 Git 저장소의 변경 상태를 감지
③ Git 저장소의 변경된 내용을 kubernetes에 배포하여 반영
ㅣ ArgoCD의 주요 기능
◾ 애플리케이션을 지정된 환경에 자동으로 배포
◾
멀티 클러스터 관리기능 제공
◾
OCI, OAuth2, LDAP 등 SSO 연동
◾
멀티 테넌시와 자체적인 RBAC 정책 제공
◾
애플리케이션 리소스 상태 분석
◾
애플리케이션 자동 및 수동 동기화 기능 제공
◾
Argo가 관리하고 있는 쿠버네티스 리소스 시각화 UI 제공
◾
자동화 및 CI 통합을 위한 CLI 제공
위 내용은 ArgoCD가 제공하는 주요 기능을 나열한 것인데요, 이 중에서도 대표적인 다섯 가지 기능에 대해서 자세히 살펴보겠습니다.
① 쿠버네티스 모니터링
ArgoCD는 쿠버네티스를 항상 추적하고 있다가 저장소의 변경사항이 감지되면, 자동으로 클러스터의 상태를 저장소의 상태와 동기화합니다. 또한 문제가 생기면 이전 상태로 롤백 할 수 있으며, 이를 통해 시스템 복구 및 문제 해결을 용이하게 합니다.
② 멀티 클러스터 관리
다중 클러스터 환경에서도 배포를 관리할 수 있어 복잡한 인프라 환경에서의 효율적인 작업을 가능하게 합니다.
③ ArgoCD 대시보드
Argo에서는 클러스터 상태를 효과적으로 관리하고 모니터링할 수 있는 대시보드를 제공합니다.
ArgoCD 대시보드를 통해 애플리케이션의 실시간 상태와 동기화 상태와 같은 전체적인 배포 파이프라인을 자동화하여 시각적으로 확인할 수 있고, 롤백 및 이력 추적 기능도 동시에 제공하고 있습니다.
④ 안전한 인증 및 권한 관리
역할 기반 액세스 제어(RBAC) 및 권한 제어기능을 통해 민감한 정보에 대한 접근을 제어할 수 있습니다.
⑤ GitOps 지원
ArgoCD는 GitOps 방법론을 따르므로 애플리케이션의 배포를 Git Repository와 동기화할 수 있습니다. 이를 통해 코드와 인프라의 일관성을 유지하고 변경사항을 추적할 수 있습니다.
ㅣ Helm과 ArgoCD의 통합 활용 프로세스
Helm과 Argo를 함께 사용하면 개발, 테스트, 배포 프로세스를 효과적으로 관리할 수 있습니다. Helm으로 애플리케이션을 패키징하고 버전을 관리하며, Argo를 활용하여 GitOps 워크플로우를 통해 지속적인 통합 및 배포를 자동화할 수 있습니다.
① develop:
Helm을 사용하여 애플리케이션을 Helm Chart로 패키징 합니다. 이후 개발된 Helm Chart를 저장하기 위한 Git 저장소를 설정합니다. ArgoCD에서 저장한 저장소를 특정 배포 대상 Kubernetes 클러스터와 연결하여, Git 저장소의 변경사항을 감지하고 새로운 배포를 시작하여 클러스터에 적용합니다.
② git push:
개발자가 로컬 저장소 내용을 원격 저장소에 배포합니다.
③ Observe(GitOps):
ArgoCD는 Git 저장소의 변경 사항을 감지하여, 변경사항이 발생하면 새로운 버전의 애플리케이션을 배포하여 자동화 및 일관성을 유지합니다.
④ 운영/테스트/개발
ㅣ마무리
오늘 함께 살펴본 Helm과 ArgoCD 두 가지 강력한 도구를 함께 이용한다면 CI/CD 통합, 버전 관리, 자동화 등의 이점을 활용해서 kubernetes 환경에서 애플리케이션을 더 효율적으로 관리할 수 있습니다.
한편 애플리케이션을 효과적으로 개발하는 것도 중요하지만, kubernetes 환경의 프로세스를 실시간 모니터링하고 추적하여 관리하는 것도 매우 중요합니다.
브레인즈컴퍼니의 kubernetes 모니터링 솔루션 Zenius-K8s는 다양한 CI/CD 도구를 이용하여 개발한 kubernetes 애플리케이션의 전체 클러스터 및 구성요소에 대한 상세 성능 정보를 모니터링하고, 리소스를 추적함으로써 시스템의 안정성과 성능을 높여주고 있습니다.
#쿠버네티스
#Helm
#Argo
#K8s
#kubernetes
#ArgoCD
#ZeniusK8s
강예원
프리세일즈팀
고객에게 특화된 Zenius를 제공하기 위해, 비즈니스 요구에 알맞은 전략적 컨설팅을 제안합니다.
필진 글 더보기
목록으로
추천 콘텐츠
이전 슬라이드 보기
EMS, NPM, AIOps까지! NMS의 진화 자세히 보기
EMS, NPM, AIOps까지! NMS의 진화 자세히 보기
앞선 글들을 통해서 NMS의 기본 개념, 구성요소와 기능, 정보 수집 프로토콜에 대해서 알아봤었는데요. 이번 글에서는 NMS의 역사와 진화 과정, 그리고 최근 트렌드에 대해서 자세히 알아보겠습니다. EMS, NPM, 그리고 AIOps에 이르기까지 네트워크의 빠른 변화에 발맞추어 진화하고 있는 NMS에 대해서 하나씩 하나씩 살펴보겠습니다. ㅣNMS의 역사와 진화 과정 우선 NMS의 전반적인 역사와 진화 과정을 살펴보겠습니다. [1] 초기 단계 (1980년대 이전) 초기에는 네트워크 관리가 수동적이었습니다. 네트워크 운영자들은 네트워크를 모니터링하고 문제를 해결하기 위해 로그 파일을 수동으로 분석하고 감독했습니다. [2] SNMP의 등장 (1988년) SNMP(Simple Network Management Protocol)의 등장으로 네트워크 장비에서 데이터를 수집하고 이를 중앙 집중식으로 관리하는 표준 프로토콜을 통해 네트워크 관리자들이 네트워크 장비의 상태를 실시간으로 모니터링하고 제어할 수 있게 됐습니다. [3] 네트워크 관리 플랫폼의 출현 (1990년대 중후반) 1990년대 후반부에는 상용 및 오픈 소스 기반의 통합된 네트워크 관리 플랫폼이 등장했습니다. 이러한 플랫폼들은 다양한 네트워크 장비와 프로토콜을 지원하고, 시각화된 대시보드와 경고 기능 등을 제공하여 네트워크 관리의 편의성을 높였습니다. [4] 웹 기반 NMS (2000년대 중반) 2000년대 중반에는 웹 기반의 NMS가 등장했습니다. 이러한 시스템은 사용자 친화적인 웹 인터페이스를 통해 네트워크 상태를 모니터링하고 관리할 수 있게 했습니다. [5] 클라우드 기반 NMS (2010년대 이후) 최근 몇 년간 클라우드 기반 NMS의 등장으로 네트워크 관리의 패러다임이 변화하고 있습니다. 또한 빅데이터 기술과 인공지능(AI) 기술을 활용하여 네트워크 성능을 최적화하고, 향후 성능을 예측할 수 있는 성능 예측 기능까지 NMS에서 제공하고 있습니다. ㅣNMS에서 EMS로의 진화 네트워크 환경은 빠르게 변화하게 되고, 이에 따라서 NMS도 EMS로 진화하게 됩니다. NMS의 진화는 총 세 가지 세대로 나눌 수 있습니다. 1세대: 디바이스 관리 시스템 기존의 NMS는 외산 제조사에서 제공하는 전용 네트워크 솔루션이 주를 이루었습니다. CISCO의 시스코웍스(CiscoWorks), IBM의 넷뷰(NetView) HP의 네트워크 노드 매니저(Network Node Manager) 등 다양한 벤더들이 자사의 제품에 대한 모니터링 서비스를 제공하기 위해 특화된 디바이스 관리 솔루션을 내놓았죠. HP Network Node Manager 예시 화면(출처ⓒ omgfreeet.live) 물론 자사의 제품을 관리하기 위한 목적에서 출발한 솔루션이었기에, 대규모 이기종 IT 인프라 환경에 대한 모니터링 기능은 제공하지 못했습니다. 2세대: IT 인프라 관리 시스템 EMS의 등장 1세대의 NMS의 경우 빠르게 급변하는 네트워크 트렌드를 따라갈 수 없었습니다. 가상랜(VLAN), 클라이언트-서버 기술이 발달하게 되자, IP 네트워크 관계만으로 실제 토폴로지를 파악하기 어려웠습니다. 또한 네트워크장비 및 회선의 상태뿐 아니라, 서버 등의 이기종 IT 인프라 통합 모니터링에 대한 니즈와 함께 EMS(Enterprise Management System)의 시대가 시작됩니다. 이에 따라 서비스 관리 차원의 통합 관제 서비스가 등장합니다. 기존의 네트워크 모니터링뿐 아니라 서버, DBMS, WAS 등 IT 서비스를 이루고 있는 모든 인프라들에 대한 통합 모니터링에 대한 관심과 니즈가 증가했기 때문입니다. 3세대: 클라우드 네이티브 환경의 EMS 2010년 중 이후 서버, 네트워크 등 IT 인프라에 대한 클라우드 네이티브로의 전환이 가속화되었습니다. 기존의 레거시 환경에 대한 모니터링과 함께 퍼블릭, 프라이빗 클라우드에 대한 모니터링 니즈가 증가하면서 모든 환경에 대한 통합적인 가시성을 제공해 줄 수 있는 EMS가 필요하게 되었죠. 이외에도 AI의 발전을 통해 AIOps, Observability라는 이름으로 인프라에 대한 장애를 사전적으로 예측할 수 있는 기능이 필요하게 됐습니다. ㅣ네트워크 환경 변화(가상화)와 NMS의 변화 이번에는 네트워크 환경 변화에 따른 NMS의 변화에 대해서 알아보겠습니다. 네트워크 환경 변화(네트워크 가상화) 네트워크 구성 방식은 지속적으로 변화해왔습니다. 클라이언트-서버 모델부터 중앙 집중식 네트워크, MSA 환경에서의 네트워크 구성까지 이러한 변화는 기술 발전, 비즈니스 요구 사항, 보안 요구 사항 등 다양한 요인에 의해 영향을 받았는데요. 무엇보다 가장 중요한 변화는 전통적인 온 프레미스 네트워크 구조에서 네트워크 자원이 더 이상 물리적인 장비 기반의 구성이 아닌 가상화 환경에서 구성된다는 점입니다. ▪소프트웨어 정의 네트워킹(SDN, 2000년대 후반 - 현재): 네트워크 관리와 제어를 분리하고 소프트웨어로 정의하여 유연성과 자동화를 향상시키는 접근 방식입니다. SDN은 네트워크 관리의 복잡성을 줄이고 가상화, 클라우드 컴퓨팅 및 컨테이너화와 같은 새로운 기술의 통합을 촉진시켰습니다. ▪네트워크 가상화 (NFV, 현재): 기존 하드웨어 기반 전용 장비에서 수행되던 네트워크 기능을 소프트웨어로 가상화하여 하드웨어 의존성과 장비 벤더에 대한 종속성을 배제하고, 네트워크 오케스트레이션을 통해 네트워크 환경 변화에 민첩한 대응을 가능하게 합니다. ㅣ클라우드, AI 등의 등장에 따른 NMS의 방향 클라우드 네이티브가 가속화되고, AI를 통한 인프라 관리가 주요 화두로 급부상하면서 네트워크 구성과 이를 모니터링하는 NMS의 환경 역시 급변하고 있습니다. 클라우드 내의 네트워크: VPC VPC(Virtual Private Cloud)는 퍼블릭 클라우드 환경에서 사용할 수 있는 전용 사설 네트워크입니다. VPC 개념에 앞서 VPN에 대한 개념을 단단히 잡고 넘어가야 합니다. VPN(Virtual Private Network)은 가상사설망으로 '가상'이라는 단어에서 유추할 수 있듯이 실제 사설망이 아닌 가상의 사설망입니다. VPN을 통해 하나의 네트워크를 가상의 망으로 분리하여, 논리적으로 다른 네트워크인 것처럼 구성할 수 있습니다. VPC도 이와 마찬가지로 클라우드 환경을 퍼블릭과 프라이빗의 논리적인 독립된 네트워크 영역으로 분리할 수 있게 해줍니다. VPC가 등장한 후 클라우드 내에 있는 여러 리소스를 격리할 수 있게 되었는데요. 예를 들어 'IP 주소 간에는 중첩되는 부분이 없었는지', '클라우드 내에 네트워크 분리 방안' 등 다양한 문제들을 VPC를 통해 해결할 수 있었습니다. ▪서브넷(Subnet): 서브넷은 서브 네트워크(Subnetwork)의 줄임말로 IP 네트워크의 논리적인 영역을 부분적으로 나눈 하위망을 말합니다. AWS, Azure, KT클라우드, NHN 등 다양한 퍼블릭 클라우드의 VPC 서브넷을 통해 네트워크를 분리할 수 있습니다. ▪서브넷은 크게 퍼블릿 서브넷과 프라이빗 서브넷으로 나눌 수 있습니다. 말 그대로 외부 인터넷 구간과 직접적으로 통신할 수 있는 공공, 폐쇄적인 네트워크 망입니다. VPC를 이용하면 Public subnet, Private subnet, VPN only subnet 등 필요에 따라 다양한 서브넷을 생성할 수 있습니다. ▪가상 라우터와 라우트 테이블(routing table): VPC를 통해 가상의 라우터와 라우트 테이블이 생성됩니다. NPM(Network Performance Monitoring) 네트워크 퍼포먼스 모니터링(NPM)은 전통적인 네트워크 모니터링을 넘어 사용자가 경험하는 네트워크 서비스 품질을 측정, 진단, 최적화하는 프로세스입니다. NPM 솔루션은 다양한 유형의 네트워크 데이터(ex: packet, flow, metric, test result)를 결합하여 네트워크의 성능과 가용성, 그리고 사용자의 비즈니스와 연관된 네트워크 지표들을 분석합니다. 단순하게 네트워크 성능 데이터(Packet, SNMP, Flow 등)를 수집하는 수동적인 과거의 네트워크 모니터링과는 다릅니다. 우선 NPM은 네트워크 테스트(Synthetic test)를 통해 수집한 데이터까지 활용하여, 실제 네트워크 사용자가 경험하는 네트워킹 서비스 품질을 높이는데 그 목적이 있습니다. NPM 솔루션은 NPMD라는 이름으로 불리기도 합니다. Gartner는 네트워크 성능 모니터링 시장을 NPMD 시장으로 명명하고 다양한 데이터를 조합하여 활용하는 솔루션이라고 정의했습니다. 즉 기존의 ICMP, SNMP 활용 및 Flow 데이터 활용과 패킷 캡처(PCAP), 퍼블릭 클라우드에서 제공하는 네트워크 데이터 활용까지 모든 네트워크 데이터를 조합하는 것이 핵심이라 할 수 있습니다. AIOps: AI를 활용한 네트워크 모니터링 AI 모델을 활용한 IT 운영을 'AIOps'라고 부릅니다. 2014년 Gartner를 통해 처음으로 등장한 이 단어는 IT 인프라 운영에 머신러닝, 빅데이터 등 AI 모델을 활용하여 리소스 관리 및 성능에 대한 예측 관리를 실현하는 것을 말합니다. 가트너에서는 AIOps에 대한 이해를 위해 관제 서비스, 운영, 자동화라는 세 가지 영역으로 분류해서 설명하고 있습니다. ▪관제(Observe): AIOps는 장애 이벤트가 발생할 때 분석에 필요한 로그, 성능 메트릭 정보 및 기타 데이터를 자동으로 수집하여 모든 데이터를 통합하고 패턴을 식별할 수 있는 관제 단계가 필요합니다. ▪운영(Engine): 수집된 데이터를 분석하여 장애의 근본 원인을 판단하고 진단하는 단계로, 장애 해결을 위해 상황에 맞는 정보를 IT 운영 담당자에게 전달하여 반복적인 장애에 대한 조치 방안을 자동화하는 과정입니다. ▪자동화(Automation): 장애 발생 시 적절한 해결책을 제시하고 정상 복구할 수 있는 방안을 제시하여, 유사 상황에도 AIOps가 자동으로 조치할 수 있는 방안을 마련하는 단계입니다. 위의 세 단계를 거쳐 AIOps를 적용하면 IT 운영을 사전 예방의 성격으로 사용자가 이용하는 서비스, 애플리케이션, 그리고 인프라까지 전 구간의 사전 예방적 모니터링을 가능하게 합니다. 또한 구축한 데이터를 기반으로 AI 알고리즘 및 머신 러닝을 활용하여 그 어떠한 장애에 대한 신속한 조치와 대응도 자동으로 가능하게 합니다. Zenius를 통한 클라우드 네트워크 모니터링 참고로 Zenius를 통해 각 퍼블릭 클라우드 별 VPC 모니터링이 가능합니다. VPC의 상태 정보와 라우팅 테이블, 서브넷 목록 및 서브넷 별 상세 정보 (Subnet ID, Available IP, Availability Zone 등)에 대한 모니터링 할 수 있습니다. Zenius-CMS를 통한 AWS VPC 모니터링 이외에도 각 클라우드 서비스에 대한 상세 모니터링을 통해 클라우드 모니터링 및 온 프레미스를 하나의 화면에서 모니터링하실 수 있습니다. 。。。。。。。。。。。。 지금까지 살펴본 것처럼, 네트워크의 변화에 따라서 NMS는 계속해서 진화하고 있습니다. 현재의 네트워크 환경과 변화할 환경을 모두 완벽하게 관리할 수 있는 NMS 솔루션을 통해 안정적으로 서비스를 운영하시기 바랍니다.
2024.04.03
쿠버네티스(K8s) 모니터링에서 가장 중요한 두 가지?!
쿠버네티스(K8s) 모니터링에서 가장 중요한 두 가지?!
2022년 CNCF의 연간 조사에 따르면 전 세계 기업의 96%가 쿠버네티스를 활용 중이거나 활용을 고려 중인 것으로 나타났습니다. 또한 가트너는 쿠버네티스(Kubernetes, K8s) 시장의 규모가 올해 1조 2천억 원대를 돌파할 것으로 내다봤습니다. 이처럼 쿠버네티스가 '대세'로 자리 잡고 있는 가운데, 쿠버네티스 활용에 대한 어려움을 겪는 기업도 많아지고 있습니다. 클러스터 내의 리소스 할당/운영과 쿠버네티스 콘솔(대시보드)의 구성이 가장 큰 어려움으로 꼽히는데요, 이러한 어려움을 극복하기 위한 첫 번째 조건은 바로 올바른 '쿠버네티스 모니터링'입니다. 효과적이고 올바른 쿠버네티스 모니터링을 위해선 두 가지를 '꼭' 기억해야 하는데요, 지금부터 그 두 가지를 자세히 알아보겠습니다. ㅣ올바른 쿠버네티스 모니터링을 위한 두 가지 조건 첫 번째, 쿠버네티스의 주요 항목을 한눈에 볼 수 있어야 합니다 쿠버네티스 환경은 규모가 크고 동적이며 복잡한 구조를 가지고 있습니다. 그렇기 때문에 리소스 사용률, 에러 로그 등의 중요 정보를 실시간으로 파악할 수 있어야 합니다. 따라서 쿠버네티스 모니터링을 효과적으로 수행하기 위해 첫 번째로 기억해야 할 것은 '쿠버네티스 환경을 한 화면에서 종합적으로 볼 수 있어야 한다는 점'입니다. 우선 종합적인 모니터링을 통해 리소스 사용률, 트래픽 패턴 등의 중요 정보를 실시간으로 파악할 수 있어 문제 발생 시 빠르게 원인을 진단하고 해결할 수 있습니다. 또한 쿠버네티스 운영의 핵심은 효율적인 리소스 관리인데, 종합적인 모니터링을 통해 리소스 낭비를 줄이고 애플리케이션의 성능을 최적화할 수 있습니다. 이와 더불어 시스템의 이상 유무를 지속적으로 모니터링함으로써, 예기치 않은 다운타임 등의 오류를 방지할 수도 있죠. 따라서 쿠버네티스 모니터링 솔루션에는 각 구성요소들 간의 관계와 영향도를 '한 눈'에 파악할 수 있는 모니터링 View가 반드시 필요합니다. 더불어 쿠버네티스 환경을 관리하는 운영자나 조직마다 중요하게 생각하는 데이터 지표가 다릅니다. 때문에 운영자가 자신의 필요에 따라 모니터링 화면을 자유롭게 구성할 수 있다면, 더욱 효과적으로 시스템을 관리할 수 있습니다. [그림1] (왼) 클러스터 상세 모니터링 View, (중) 클러스터 메인 모니터링 View, (오) 주요 Service 모니터링 View 더 자세한 설명을 위해 제니우스(Zenius)의 쿠버네티스 모니터링 솔루션인 Zenius-K8s을 예로 살펴보겠습니다. 우선 [그림1]에 나와있는 것처럼 쿠버네티스 모니터링 솔루션은 여러 클러스터 현황을 한눈에 확인할 수 있는 요약 뷰를 제공해야 합니다. 이를 통해 클러스터의 상세한 현황과 노드, 파드, 컨테이너, 서비스 등을 통합적으로 모니터링할 수 있기 때문이죠. 이러한 기능은 운영자로 하여금 시스템 전반에 대한 신속한 이해를 가능하게 하고, 업무 효율성을 크게 높여줍니다. [그림2] (왼) Zenius-K8s 운영현황 오버뷰 (오) 사용자가 직접 정보를 구성할 수 있는 컴포넌트 수정창 여기에 더해서 Zenius-K8s처럼 쿠버네티스 주요 데이터 지표를 '사용자 관제 목적'에 따라 자유롭게 구성이 가능하고 가시성 높은 다양한 차트와 컴포넌트를 포함한 오버뷰를 제공한다면, 더욱더 성공적인 쿠버네티스 활용이 가능해집니다. 두 번째, 클러스터 별로 상세한 성능을 확인할 수 있어야 합니다 효과적이고 올바른 쿠버네티스 모니터링을 위한 두 번째 조건은, '클러스터 별로 상세한 성능을 확인할 수 있어야 한다는 것'입니다. 특히 쿠버네티스 환경을 관리하고 최적화함에 있어서 핵심적인 역할을 하는 클러스터 현황(노드, 파드, 컨테이너), 성능 지표(CPU 사용량, Memory 사용량), 이벤트 현황을 연관 지어 직관적으로 모니터링할 수 있어야 합니다. 이를 통해서 운영자는 클러스터의 전반적인 상태를 실시간으로 모니터링하고, 발생 가능한 문제를 조기에 식별하여 시스템의 안정성과 성능을 지속적으로 높일 수 있기 때문이죠. 또한 클러스터의 각 구성 요소가 서로 다른 역할을 수행하기 때문에 각 노드, 파드, 컨테이너별로 상세히 모니터링하는 것도 매우 중요합니다. [그림3] 클러스터 별 상세정보 요약 뷰 지금 살펴본 내용을 Zenius-K8s 예시 화면을 통해 다시 한번 되짚어 보겠습니다. 먼저 위 [그림3]에서 보이는 것처럼 주요 클러스터 현황(노드, 파드, 컨테이너 등), 주요 성능 지표(CPU, Memory 사용률 등), 이벤트 현황 등을 한 화면에서 확인할 수 있는 요약 뷰가 있어야 합니다. [그림4] Zenius-K8s 토폴로지 맵 특히, Zenius-K8s의 경우 수집한 데이터를 기반으로 자동으로 각 구성요소 간의 연관관계와 서비스 상태를 토폴로지 맵(Topolgy Map) 형태로 구성할 수 있습니다. 또한 다양한 조회 기준(노드, 네임스페이스, 서버)과 상세 정보 조회 기능을 제공하고 있죠. 쿠버네티스 모니터링 솔루션에는, 직관적이고 효율적인 모니터링을 위해 반드시 위와 같은 기능이 포함되어 있어야 합니다. [그림5] 노드(Node) 별 상세 모니터링 [그림6] 파드(Pod) 별 상세 모니터링 [그림7] 컨테이너(Container) 별 상세 모니터링 마지막으로 위의 Zenius-K8s의 예시 화면들처럼, 클러스터 내 각각의 구성요소에 대한 상세한 모니터링이 필요합니다. 이를 통해 산재된 데이터에 대한 효율적인 관리가 가능하기 때문이죠. 。。。。。。。。。。。。 지금까지 성공적인 쿠버네티스 모니터링을 위한 두 가지 조건을 살펴봤습니다. 쿠버네티스의 활용도와 중요성이 더 커지는 가운데, 운영의 안정성과 효율성을 높여주는 쿠버네티스 모니터링 솔루션 도입은 이제 선택이 아닌 필수가 되었습니다. 쿠버네티스 현황을 한눈에 볼 수 있고, 세부 요소를 세밀하게 들여다볼 수 있는 모니터링 솔루션을 통해서 성공적으로 쿠버네티스를 활용하시기 바랍니다.
2024.04.05
금융권에서 꾸준히 각광받는 제니우스(Zenius)
금융권에서 꾸준히 각광받는 제니우스(Zenius)
지난해 10월 일본의 은행 간 결제 시스템이 이틀간 '먹통'이 된 사태가 발생했었습니다. 그리고 한 달 후에는 카드 결제 데이터를 처리하는 일본 카드 네트워크의 시스템 오류로 인해 일본 각지에서 7시간 넘게 시민들이 카드 사용을 못 하는 불편이 발생하기도 했죠. 일본의 사례와 같이 은행이나 카드회사 등의 금융회사에서 네트워크/서버의 장애가 발생할 경우 궁극적으로 이익과 신뢰도의 급감으로 이어질 수 있습니다. 그렇기 때문에 '사고 없는' IT 인프라 환경 운영을 위한 노력을 이어가는 가운데, 브레인즈컴퍼니의 제니우스(Zenius)을 활용하는 금융기관이 꾸준히 증가하고 있습니다. ㅣ제니우스, 금융기관에서 꾸준히 각광받다 앞서 언급한 대로, 제니우스를 도입하고 활용하는 금융기관이 꾸준히 늘고 있습니다. 최근 수협중앙회는 '통합관제 및 운영 자동화'를 위해, 그리고 새마을금고는 '빅데이터 플랫폼 고도화'를 위해 제니우스를 도입했습니다. 또한 한국수출입은행과 한국 주택금융공사도 서버와 네트워크 관리를 위해 제니우스를 활용하고 있습니다. 이 밖에도 NH 뱅크, 신협중앙회, 광주은행, IBK 투자증권, DB손해보험 등에서도 꾸준히 제니우스를 활용하고 있습니다. 그렇다면 금융기관에서 제니우스를 꾸준히 사용하고 있는 이유는 무엇일까요? ㅣ제니우스의 네 가지 강점 금융기관에서 꾸준히 각광받는 제니우스는 크게 네 가지의 강점이 있습니다. [1] IT 인프라에 대한 통합 관리 제니우스는 금융기관의 복잡한 IT 환경을 통합 관리할 수 있는 기능들을 제공합니다. 이를 통해 IT 인프라의 성능 및 장애 정보를 빠르게 파악할 수 있어서, 운영 효율성과 안정성을 크게 높을 수 있습니다. [2] 보안 강화 금융기관에 필수적인 높은 수준의 보안을 유지할 수 있도록 제니우스는 통합 로그 관리, 보안 취약점 점검 등의 보안 기능을 제공합니다. 이를 통해 보안 위협에 대응하고 사전에 예방할 수 있습니다. [그림] 제니우스(Zenius) 오버뷰 예시화면 [3] 장애 대응 및 예방 실시간 모니터링과 자동 장애 복구 기능으로 시스템 장애에 대한 신속한 예방과 대응이 가능합니다. 이를 통해 서비스 중단을 최소화하고, 고객 만족도를 높일 수 있습니다. [4] 클라우드 서비스 지원 쿠버네티스 활용을 비롯한 클라우드 환경으로의 전환은 금융기관의 중요한 이슈로 떠오르고 있습니다. 제니우스는 모든 클라우드 환경(퍼블릭, 프라이빗, 하이브리드)에 대한 모니터링이 가능하여, 클라우드 서비스 안정성과 효율성을 크게 높여줍니다. 제니우스(Zenius)는 앞서 살펴 본 금융기관뿐 아니라, 공공기관과 기업을 포함한 1,000곳 이상에서 활발히 활용되고 있습니다. CSAP 인증과 GS 인증 1등급도 획득한 제니우스를 통해 성공적인 IT 인프라를 관리하시기 바랍니다.
2024.04.16
제니우스 SIEM(통합로그관리 시스템), 클라우드 서비스 확산 사업 서비스로 선정
제니우스 SIEM(통합로그관리 시스템), 클라우드 서비스 확산 사업 서비스로 선정
브레인즈컴퍼니의 IT 인프라 통합로그관리 시스템인 '제니우스 SIEM'이 과기부와 정보통신산업진흥원이 주관하는 '2024년 중소기업 클라우드 서비스 보급 확산 사업'의 공급 서비스로 선정됐습니다! ㅣ중소기업 클라우드 서비스 보급 확산 사업이란? 이 사업은 국내 중소기업들이 클라우드 기반의 디지털 서비스를 더 활발하게 사용하게 되는 것이 가장 큰 목적입니다. 위 이미지 상의 '수요기업'이 공급 서비스를 선택하여 이용 신청을 하면, 운영 기관에서 수요기업의 환경(산업 분야, 기업 규모 등)를 고려하여 도입 컨설팅 및 이용료를 지원합니다. 지원은 크게 두 가지 부문으로 일반지원과 집중 지원으로 나누어 진행되는데요. 일반지원으로 신청하여 최종 선정되면 최대 1,550만 원을, 집중 지원은 최대 5,000만 원을 지원받을 수 있습니다. (단, 자부담금은 20%) 브레인즈컴퍼니는 이번 사업에서 재무 건정성과, 통합로그관리 시장에서의 Zenius(제니우스) SIEM의 영향도를 높이 평가받아 제공기업으로 선정될 수 있었습니다. ㅣ제니우스(Zenius) SIEM은? 이번 사업의 공급 서비스로 등록된 제니우스 SIEM은, 이기종의 다양한 장비에서 발생되는 로그(Log)를 수집 및 분석하고 모니터링할 수 있는 솔루션입니다. AI 기술을 기반으로 한 SIEM을 통해 효율적인 실시간 모니터링과 컴플라이언스 준수, 그리고 보안 위협에 대한 대응 체계를 수립할 수 있어 시장에서 좋은 평가를 받고 있습니다. [그림] 제니우스 SIEM 예시 화면 높은 기술력과 품질을 인정받아 2023년에 CC 인증과 GS 인증 1등급을 획득하기도 한 SIEM은, 현재 인천공항공사를 비롯한 다수의 공공기관 및 기업에서 도입 후 사용 중에 있습니다. 제니우스 SIEM의 주요 특정점은 빠른 인덱싱 및 검색 속도, 무중단 스테일 아웃, 복합 이벤트 처리(CEP), 그리고 사용자 상황에 맞춘 사용자 정의 대시보드, 강력한 통계 분석 기능 등이 있습니다. 결과적으로 제니우스 SIEM을 통해 대용량 로그에 대한 통합 관리, 사이버 침해 위협에 대한 보안 대응 체계 마련, 컴플라이언스 준수 등의 목적을 이룰 수 있습니다. 다양한 기능을 탑재한 제니우스 SIEM을 통해, 대용량 로그에 대한 실시간 통합 모니터링 체계 구축하고 보안 위협에도 효과적으로 대응하시기 바랍니다.
2024.04.16
다음 슬라이드 보기