반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
스토리지 관리
예방 점검
APM Solution
애플리케이션 관리
URL 관리
브라우저 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
AI 인공지능
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
기술이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
카프카를 통한 로그 관리 방법
메모리 누수 위험있는 FinalReference 참조 분석하기
김진광
2023.10.12
페이스북 공유하기
트위터 공유하기
링크드인 공유하기
블로그 공유하기
[행사] 브레인즈컴퍼니 ‘가을문화행사 2023’
Java에서 가장 많이 접하는 문제는 무엇이라 생각하시나요? 바로 리소스 부족 특히 ‘JVM(Java Virtual Machine) 메모리 부족 오류’가 아닐까 생각해요.
메모리 부족 원인에는 우리가 일반적으로 자주 접하는 누수, 긴 생명주기, 다량의 데이터 처리 등 몇 가지 패턴들이 있는데요. 오늘은 좀 일반적이지 않은(?) 유형에 대해 이야기해 볼게요!
Java 객체 참조 시스템은 강력한 참조 외에도 4가지 참조를 구현해요. 바로 성능과 확장성 기타 고려사항에 대한 SoftReference, WeakReference, PhantomReference, FinalReference이죠. 이번 포스팅은
FinalReference를 대표적인 사례
로 다루어 볼게요.
PART1. 분석툴을 활용해 메모리 누수 발생 원인 파악하기
메모리 분석 도구를 통해 힙 덤프(Heap Dump)를 분석할 때, java.lang.ref.Finalizer 객체가 많은 메모리를 점유하는 경우가 있어요. 이 클래스는 FinalReference와 불가분의 관계에요. 나눌 수 없는 관계라는 의미죠.
아래 그림 사례는 힙 메모리(Heap Memory)의 지속적인 증가 후 최대 Heap에 근접 도달 시, 서비스 무응답 현상에 빠지는 분석 사례인데요. 이를 통해 FinalReference 참조가 메모리 누수를 발생시킬 수 있는 조건을 살펴볼게요!
Heap Analyzer 분석툴을 활용하여, 힙 덤프 전체 메모리 요약 현황을 볼게요. java.lang.ref.Finalizer의 점유율이 메모리의 대부분을 점유하고 있죠. 여기서 Finalizer는, 앞에서 언급된 FinalReference를 확장하여 구현한 클래스에요.
JVM은 GC(Garbage Collection) 실행 시 해제 대상 객체(Object)를 수집하기 전, Finalize를 처리해야 해요.
Java Object 클래스에는 아래 그림과 같이 Finalize 메서드(Method)가 존재하는데요. 모든 객체가 Finalize 대상은 아니에요.
JVM은 클래스 로드 시, Finalize 메서드가 재정의(Override)된 객체를 식별해요. 객체 생성 시에는 Finalizer.register() 메서드를 통해, 해당 객체를 참조하는 Finalizer 객체를 생성하죠.
그다음은 Unfinalized 체인(Chain)에 등록해요. 이러한 객체는 GC 발생 시 즉시 Heap에서 수집되진 않아요. Finalizer의 대기 큐(Queue)에 들어가 객체에 재정의된 Finalize 처리를 위해 대기(Pending) 상태에 놓여있죠.
위 그림과 같이 참조 트리(Tree)를 확인해 보면, 많은 Finalizer 객체가 체인처럼 연결되어 있어요. 그럼 Finalizer 객체가 실제 참조하고 있는 객체는 무엇인지 바로 살펴볼까요?
그림에 나온 바와 같이 PostgreSql JDBC Driver의 org.postgresql.jdbc3g.Jdbc3gPreparedStatement인 점을 확인할 수 있어요. 해당 시스템은 PostgreSql DB를 사용하고 있었네요.
이처럼 Finalizer 참조 객체 대부분은 Jdbc3gPreparedStatement 객체임을 알 수 있어요. 여기서 Statement 객체는, DB에 SQL Query를 실행하기 위한 객체에요.
그렇다면, 아직 Finalize 처리되지 않은 Statement 객체가 증가하는 이유는 무엇일까요?
먼저 해당 Statement 객체는 실제로 어디서 참조하는지 살펴볼게요. 해당 객체는 TimerThread가 참조하는 TaskQueue에 들어가 있어요. 해당 Timer는 Postgresql Driver의 CancelTimer이죠.
해당 Timer의 작업 큐를 확인해 보면 PostgreSql Statement 객체와 관련된 Task 객체도 알 수도 있어요.
그럼 org.postgresql.jdbc3g.Jdbc3gPreparedStatement 클래스가 어떻게 동작하는지 자세히 알아볼까요?
org.postgresql.jdbc3g.Jdbc3gPreparedStatement는 org.postgresql.jdbc2.AbstractJdbc2Statement의 상속 클래스이며 finalize() 메서드를 재정의한 클래스에요. Finalize 처리를 위해 객체 생성 시, JVM에 의해 Finalizer 체인으로 등록되죠.
위와 같은 코드로 보아 CancelTimer는, Query 실행 후 일정 시간이 지나면 자동으로 TimeOut 취소 처리를 위한 Timer에요.
정해진 시간 내에 정상적으로 Query가 수행되고 객체를 종료(Close) 시, Timer를 취소하도록 되어 있어요. 이때 취소된 Task는 상태 값만 변경되고, 실제로는 Timer의 큐에서 아직 사라지진 않아요.
Timer에 등록된 작업은, TimerThread에 의해 순차적으로 처리돼요. Task는 TimerThread에서 처리를 해야 비로소 큐에서 제거되거든요.
이때 가져온 Task는 취소 상태가 아니며, 처리 시간에 아직 도달하지 않은 경우 해당 Task의 실행 예정 시간까지 대기해야 돼요.
여기서 문제점이 발생해요.
이 대기 시간이 길어지면 TimerThread의 처리가 지연되기 때문이죠. 이후 대기 Task들은 상태 여부에 상관없이, 큐에 지속적으로 남아있게 돼요.
만약 오랜 시간 동안 처리가 진행되지 않는다면, 여러 번의 Minor GC 발생 후 참조 객체들은 영구 영역(Old Gen)으로 이동될 수 있어요.
영구 영역으로 이동된 객체는, 메모리에 즉시 제거되지 못하고 오랜 기간 남게 되죠. 이는 Old(Full) GC를 발생시켜 시스템 부하를 유발하게 해요. 실제로 시스템에 설정된 TimeOut 값은 3,000초(50분)에요.
Finalizer 참조 객체는 GC 발생 시, 즉시 메모리에서 수집되지 않고 Finalize 처리를 위한 대기 큐에 들어가요. 그다음 FinalizerThread에 의해 Finalize 처리 후 GC 발생 시 비로소 제거되죠. 때문에 리소스의 수집 처리가 지연될 수 있어요.
또한 FinalizerThread 스레드는 우선순위가 낮아요. Finalize 처리 객체가 많은 경우, CPU 리소스가 상대적으로 부족해지면 개체의 Finalize 메서드 실행을 지연하게 만들어요. 처리되지 못한 객체는 누적되게 만들죠.
요약한다면 FinalReference 참조 객체의 잘못된 관리는
1) 객체의 재 참조를 유발 2) 불필요한 객체의 누적을 유발 3) Finalize 처리 지연으로 인한 리소스 누적을 유발
하게 해요.
PART2.
제니우스 APM을 통해 Finalize 객체를 모니터링하는 방법
Zenius APM에서는 JVM 메모리를 모니터링하고 분석하기 위한, 다양한 데이터를 수집하고 있어요. 상단에서 보았던
FinalReference 참조 객체의 현황에 대한 항목도 확인
할 수 있죠.
APM 모니터링을 통해 Finalize 처리에 대한 문제 발생 가능성도
‘사전’
에 확인
할 수 있답니다!
위에 있는 그림은 Finalize 처리 대기(Pending)중인 객체의 개수를 확인 가능한 컴포넌트에요.
이외에도 영역별 메모리 현황 정보와 GC 처리 현황에 대해서도 다양한 정보를 확인 할 수 있어요!
이상으로 Finalize 처리 객체에 의한 리소스 문제 발생 가능성을, 사례를 통해 살펴봤어요. 서비스에 리소스 문제가 발생하고 있다면, 꼭 도움이 되었길 바라요!
------------------------------------------------------------
©참고 자료
◾ uxys, http://www.uxys.com/html/JavaKfjs/20200117/101590.html
◾ Peter Lawrey, 「is memory leak? why java.lang.ref.Finalizer eat so much memory」, stackoverflow, https://stackoverflow.com/questions/8355064/is-memory-leak-why-java-lang-ref-finalizer-eat-so-much-memory
◾ Florian Weimer, 「Performance issues with Java finalizersenyo」, enyo,
https://www.enyo.de/fw/notes/java-gc-finalizers.html
------------------------------------------------------------
#APM
#Finalize
#제니우스
#메모리 누수
#Zenius
#FinalReference
#제니우스 APM
김진광
APM팀(개발3그룹)
개발3그룹 APM팀에서 제품 개발과 기술 지원을 담당하고 있습니다.
필진 글 더보기
목록으로
추천 콘텐츠
이전 슬라이드 보기
효율적인 로그 모니터링과 실시간 로그 분석을 위한 OpenSearch PPL 활용 가이드
효율적인 로그 모니터링과 실시간 로그 분석을 위한 OpenSearch PPL 활용 가이드
오늘날 대규모 인프라 환경에서 발생하는 방대한 데이터를 관리하기 위해 로그 모니터링과 로그분석은 필수적인 요소가 되었습니다. OpenSearch(및 Elasticsearch)는 이 분야의 사실상 표준으로 자리 잡았으나, 이를 활용하는 엔지니어와 분석가들은 강력한 기능의 이면에 있는 ‘Query DSL’이라는 높은 진입 장벽을 마주하곤 합니다. JSON 형식을 기반으로 하는 DSL은 검색 조건을 매우 정밀하게 정의할 수 있다는 장점이 있습니다. 하지만 쿼리가 복잡해질수록 로직이 깊게 중첩되어 가독성이 떨어지고 생산성이 저하되는 구조적 문제를 안고 있습니다. 특히 1분 1초가 급한 장애 상황이나 보안 침해 사고를 분석해야 하는 SIEM(보안 정보 및 이벤트 관리) 환경에서, 수십 줄의 JSON 괄호를 맞추는 작업은 민첩한 대응을 방해하는 실질적인 걸림돌이 됩니다. 이러한 문제를 해결하기 위해 등장한 것이 바로 PPL(Piped Processing Language)입니다. PPL이 제안하는 새로운 분석 방식을 살펴보기 전, 먼저 우리가 기존 DSL 환경에서 겪어온 실제적인 어려움들을 통해 왜 방식의 변화가 필요한지 짚어보겠습니다. 1. 데이터 탐색의 어려움 1.1. OpenSearch DSL OpenSearch(및 Elasticsearch)는 검색 엔진 시장의 사실상 표준으로 자리 잡았지만, 데이터 분석가나 엔지니어들에게는 한 가지 큰 진입 장벽이 존재했습니다. 바로 Query DSL(Domain Specific Language)입니다. DSL은 JSON(JavaScript Object Notation) 형식을 기반으로 하며, 검색 쿼리의 구조를 매우 정밀하게 정의할 수 있다는 강력한 장점이 있습니다. 하지만 이는 동시에 인간의 직관과는 거리가 먼 방식이기도 합니다. DSL은 쿼리가 복잡해질수록 JSON 객체가 깊게 중첩되는 특성이 있기 때문입니다. 예를 들어 단순한 GROUP BY 집계를 수행하려 해도 aggs안에 terms, 그 안에 다시 aggs를 정의해야 하는 피라미드 구조가 형성됩니다. 일반적으로 데이터를 탐색하는 과정은 "A를 찾고, B를 제외한 뒤, C로 묶어서 계산한다"라는 선형적인 사고를 따릅니다. 하지만 DSL은 이 모든 조건을 하나의 거대한 JSON 객체로 구조화해야 하므로, 작성과 수정 시 높은 집중력을 요합니다. 또한 로그를 분석하거나 장애 원인을 파악하는 긴급한 상황에서, 수십 줄의 JSON 괄호 짝들은 가독성과 생산성을 저하시키는 요인이 됩니다. <예시 1.1: 지난 1시간 동안 500 에러가 발생한 상위 5개 IP 추출하기 위한 DSL문> 1.2. PPL(Piped Processing Language) PPL은 이러한 구조적 복잡성을 해결하기 위해 등장했습니다. 이름에서 알 수 있듯이, 파이프(Pipe, |)를 통해 데이터를 순차적으로 처리하는 언어입니다. PPL이 가져온 변화는 단순히 문법의 형태를 바꾼 수준에 그치지 않습니다. 데이터에 접근하는 패러다임 자체를 선언적 구조(JSON)에서 절차적 흐름(Pipeline)으로 전환시킨 것입니다. 이는 Unix와 Linux에서 익숙하게 사용되는 명령어 파이프라인 철학을 데이터 검색 엔진에 이식한 결과이기도 합니다. 이러한 방식의 변화 덕분에 사용자는 더 이상 복잡한 JSON의 계층 구조를 설계할 필요가 없습니다. 대신 "데이터를 가져오고, 필터링한 뒤, 통계를 낸다"는 인간의 자연스러운 사고 흐름에 맞춰 질의를 작성할 수 있게 되었습니다. 이는 결과적으로 쿼리 작성 시간을 단축시키고, 분석가의 의도를 더욱 명확하게 코드에 투영할 수 있게 해줍니다. <예시 1.2: 예시 1.2와 동일한 로직을 PPL로 작성한 경우> 2. PPL의 핵심 특징 및 장점 PPL을 도입해야 하는 이유는 단순히 쓰기 편해서가 아닙니다. 이는 데이터 분석의 접근성(Accessibility), 가독성(Readability), 유연성(Flexibility) 측면에서 근본적인 이점을 제공하기 때문입니다. 2.1. SQL-like Syntax 데이터 업계에서 SQL은 가장 보편적인 언어입니다. PPL은 SQL의 문법적 특성을 차용하여 접근성을 높였습니다. SELECT, WHERE, LIKE 등 익숙한 키워드를 그대로 사용하므로, 새로운 도구 도입에 따른 저항감을 최소화합니다. 2.2. Pipe ($|$) PPL의 가장 강력한 무기는 | (파이프) 연산자입니다. 이는 쿼리를 논리적 단계로 분해합니다. 1단계: 전체 데이터 가져오기 (source=logs) 2단계: 필요한 부분만 남기기 (| where status=500) 3단계: 불필요한 필드 버리기 (| fields timestamp, message) 이처럼 하나의 문제를 단계별로 쪼개며 순차적으로 해결할 수 있습니다. 이러한 방식은 디버깅의 용이성도 증가시킵니다. DSL은 쿼리가 실패하면 전체 JSON 구조를 다시 살펴봐야 하지만, PPL은 파이프를 하나씩 끊어가며 어느 단계에서 데이터가 의도와 다르게 변형되었는지 즉시 확인할 수 있습니다. 2.3. Aggregation의 추상화 OpenSearch의 집계(Aggregation) 기능은 강력하지만 DSL 작성이 매우 까다롭습니다. PPL은 이를 stats 명령어로 추상화했습니다. 기존 DSL 방식에서 집계를 하려면 버킷(Buckets)과 메트릭(Metrics)의 개념을 이해하고, 이를 JSON의 계층 구조로 쌓아 올려야 했습니다. 하지만 PPL은 이 복잡한 과정을 우리가 흔히 쓰는 SQL 스타일로 탈바꿈시켰습니다. 간단한 시나리오인 “카테고리별 평균 가격 구하기”를 DSL로 작성하면 aggs 안에 그룹핑을 위한 terms를 정의하고, 그 안에 다시 계산을 위한 aggs를 중첩해야 합니다. 평균을 구한다라는 쿼리의 의도보다 괄호와 같은 문법적 구조에 더 신경 써야 합니다. 그룹핑 조건이 늘어날수록 JSON은 기하급수적으로 깊어집니다. 반면 동일한 시나리오를 PPL로 작성하면 stats 이라는 명령어로 간단하게 표현할 수 있습니다. stats: "집계를 시작하겠다"는 선언입니다. avg(price): "무엇을 계산할지" 명시합니다. (Metric) by category: "무엇을 기준으로 묶을지" 명시합니다. (Bucket) 단 한 줄의 코드로 DSL의 복잡한 로직을 완벽하게 대체할 수 있습니다. 2.4. 동적 필드 생성 데이터 분석을 하다 보면, 인덱스에 저장된 원본 데이터(Raw Data)만으로는 부족할 때가 많습니다. - 용량이 bytes 단위로 저장되어 있어 보기 불편한 경우 - 파일 경로와 파일 이름이 하나의 필드에 있어 각각 분리해야 하는 경우 - 보낸 용량, 받은 용량만 있고 총 용량이 없는 경우 이를 해결하기 위해 데이터를 재색인(Reindexing)하는 것은 너무 복잡한 과정입니다. 하지만 PPL은 eval 명령어 하나로 쿼리 실행 시점에 필드를 즉석에서 생성합니다. 바이트 단위를 메가바이트로 변환하여 새로운 필드 size_mb를 만드는 로직은 eval 명령어와 간단한 연산자를 이용하여 작성할 수 있습니다. 원본 데이터에는 size_mb라는 필드가 존재하지 않습니다. 하지만 PPL이 실행되는 순간 계산되어, 마치 원래 있던 필드처럼 where 절에서 필터링 조건으로 사용하거나 fields로 출력할 수 있습니다. PPL의 eval은 데이터 저장 구조(Schema)가 분석의 한계가 되지 않도록, 분석가에게 데이터를 재정의할 수 있는 강력한 권한을 부여하는 기능입니다. 3. PPL 문법 해부 앞서 PPL이 데이터 분석에 제공하는 근본적인 이점들을 살펴보았습니다. 하지만 이러한 장점들을 실무에 온전히 녹여내기 위해서는 PPL이 데이터를 처리하는 방식, 즉 문법의 구조를 정확히 이해하는 과정이 필요합니다. PPL의 문법은 단순한 규칙의 나열이 아니라, 데이터의 흐름을 제어하는 그 자체입니다. 각 명령어는 이전 단계에서 넘어온 데이터를 가공하여 다음 단계로 넘겨주는 '필터' 역할을 수행합니다. 마치 공장의 컨베이어 벨트 위에서 원재료가 각 공정을 거쳐 완성품이 되는 것과 같은 원리입니다. 그럼 지금부터 데이터 분석 현장에서 가장 빈번하게 사용되는 6가지 핵심 명령어를 통해 PPL의 구조를 깊이 있게 살펴보겠습니다. 3.1. source 모든 PPL 쿼리의 시작점입니다. SQL의 FROM 절에 해당하지만, PPL에서는 search source=... 형태로 명시합니다. 단일 인덱스뿐만 아니라 와일드카드(*)를 사용하여 여러 인덱스를 동시에 조회할 수 있습니다. search source=logs-* : 'logs-'로 시작하는 모든 인덱스 조회. 3.2. where 분석에 불필요한 데이터를 걸러내는 단계입니다. SQL의 WHERE 절과 동일합니다. where는 파이프라인의 가장 앞단에 위치시키는 것이 성능상 유리합니다. 처리해야 할 데이터의 총량을 줄여주기 때문입니다. where는 AND, OR, NOT 논리 연산자와 in, like 등의 비교 연산자를 모두 지원합니다. 3.3. eval 원본 데이터에는 없지만 분석 시점에 필요한 새로운 데이터를 만들어냅니다. 기존 필드 값을 이용해 계산을 하거나 문자열을 조합하여 새로운 필드를 정의합니다. 3.4. stats SQL의 GROUP BY와 집계 함수를 합친 개념입니다. 문법: stats <function>(<field>) by <grouping_field> 집계함수: count, sum, avg, min, max와 같은 통계 분석에 필요한 함수를 제공합니다. 3.5. fields 최종 사용자에게 보여줄 데이터를 다듬는 과정입니다. SELECT 절과 유사합니다. 수백 개의 필드 중 분석에 필요한 핵심 필드만 남깁니다 (+로 포함, -로 제외 가능). rename: 기술적인 필드명(예: req_ts_ms)을 비즈니스 친화적인 이름(예: Response Time)으로 변경하여 가독성을 높입니다. 3.6. sort & head sort: 데이터의 정렬 순서를 정합니다. - 기호를 붙이면 내림차순(DESC)이 됩니다. (sort -count) head: SQL의 LIMIT와 같습니다. 상위 N개의 결과만 잘라냅니다. 대량의 데이터 분석 시 결과를 끊어서 확인하는 데 필수적입니다. 4. 실전 예제 지금까지 PPL의 기본 개념과 주요 명령어들을 살펴보았습니다. 하지만 도구의 진정한 가치는 이론적인 문법을 아는 것에 그치지 않고, 이를 실제 복잡한 데이터 환경에 어떻게 적용하느냐에 있습니다. 이제 우리가 현업에서 흔히 마주할 수 있는 구체적인 시나리오들을 통해, PPL이 실무적인 문제들을 얼마나 직관적이고 효율적으로 해결하는지 단계별로 알아보겠습니다. 4.1. Brute Force 공격 탐지 상황: 과도한 로그인 실패(401 Error) IP 식별 1) search source=access_logs: 엑세스 로그 전체를 가져옵니다. 2) where status = 401: 전체 로그 중 로그인 실패 로그만 남깁니다. 3) stats count() as fail_count by client_ip: IP 주소별로 실패 횟수를 집계합니다. 이제 데이터는 개별 로그가 아니라 'IP별 요약 정보'가 됩니다. 4) where fail_count > 50: 50회 이상 실패한 의심 IP만 필터링합니다. (집계 후 필터링 - SQL의 HAVING 절과 유사) 5) sort -fail_count: 가장 공격 빈도가 높은 IP를 최상단에 노출합니다. 4.2. 카테고리별 매출 분석 상황: 상품 카테고리별 매출 현황과 평균 단가 확인 1) eval revenue = price * quantity: price와 quantity 필드를 곱하여, 원본 데이터에 없던 revenue(매출액) 필드를 실시간으로 계산해냅니다. 2) stats sum(revenue) as total_sales, avg(revenue) as avg_order_value by category: 카테고리 기준으로 총 매출(sum)과 평균 주문액(avg)을 동시에 계산합니다. 3) head 10: 상위 10개 카테고리만 추출하여 리포트용 데이터를 완성합니다. 4.3. 시간대별 트래픽 추이 시각화 상황: 지난 24시간 동안 웹 서버의 트래픽 변화 1) span(timestamp, 10m): 연속적인 시간 데이터를 10분 단위로 자릅니다. 2) stats count() as request_count by ...: 잘라낸 10분 단위별로 요청 수(count)를 셉니다. 결과: 이 쿼리의 결과는 그대로 라인 차트(Line Chart)나 바 차트(Bar Chart)로 시각화하기 완벽한 형태(X축: 시간, Y축: 횟수)가 됩니다. 5. PPL 성능 최적화와 고려사항 PPL은 사용자가 직관적으로 쿼리를 작성할 수 있게 돕지만, 그 이면에서는 방대한 데이터를 처리하는 무거운 작업이 수행됩니다. 도구의 편리함이 시스템의 부하로 이어지지 않도록, 쿼리 효율성을 고려하는 분석 습관을 갖추는 것이 중요합니다 5.1. 성능 최적화 방안 PPL 쿼리는 파이프라인 구조이기 때문에, 앞단에서 데이터의 크기를 줄일수록 전체 실행 속도가 기하급수적으로 빨라집니다. 1) where는 search 바로 뒤에 오는 것이 좋습니다. 데이터를 집계(stats)하거나 정렬(sort)한 뒤에 필터링하는 것은 낭비입니다. 불필요한 데이터를 메모리에 올리기 전에 where 절로 과감하게 잘라내야 합니다. 2) 필요한 필드만 명시하는 것이 좋습니다. OpenSearch 문서는 수십, 수백 개의 필드를 가질 수 있습니다. fields 명령어를 사용하여 분석에 꼭 필요한 필드만 남기면 네트워크 전송량과 메모리 사용량을 획기적으로 줄일 수 있습니다. 5.2. PPL vs DSL 언제 무엇을 써야 할까? PPL이 등장했다고 해서 기존의 DSL(Domain Specific Language)이 사라지는 것은 아닙니다. 두 언어는 태생적 목적이 다릅니다. 이 둘을 상호 보완적인 관계로 이해하고 적재적소에 사용하는 것이 좋습니다. 1) PPL을 써야 하는 경우 - 사람 중심, 탐색, Ad-hoc 분석, 운영/보안 PPL은 사람이 데이터를 봐야 하는 상황에 최적화되어 있습니다. 사고의 흐름이 끊기지 않고 빠르게 질문을 던지고 답을 얻어야 하는 상황입니다. * 상황 A: 장애 발생 시 긴급 원인 분석 "지금 500 에러가 급증하는데, 특정 API에서만 발생하는 건가?" 긴급 상황에서 복잡한 JSON 괄호를 맞출 시간은 없습니다. PPL로 빠르게 필터링(where)하고 집계(stats)하여 원인을 좁혀나가야 합니다. * 상황 B: 보안 위협 헌팅 "지난 1주일간 새벽 시간에만 접속한 관리자 계정이 있는가?" 데이터를 이리저리 돌려보고, 조건을 바꿔가며 숨겨진 패턴을 찾아내는 '탐색적 분석'에는 수정이 용이한 PPL이 압도적으로 유리합니다. * 상황 C: 비개발 직군의 데이터 접근 기획자(PM), 마케터, 데이터 분석가가 직접 데이터를 추출해야 할 때. SQL에 익숙한 이들에게 JSON DSL을 학습시키는 것은 비효율적입니다. PPL은 이들에게 데이터 접근 권한을 열어주는 열쇠가 됩니다. 2) DSL을 써야 하는 경우 키워드: 기계 중심, 애플리케이션 개발, 정밀도, 검색 튜닝 DSL은 애플리케이션이 데이터를 조회할 때 최적화되어 있습니다. 코드로 구현되어 시스템의 일부로 동작하거나, 매우 정교한 검색 로직이 필요할 때 사용합니다. * 상황 A: 검색 서비스 기능 구현 쇼핑몰 검색창, 자동 완성, 추천 시스템 등 최종 사용자에게 노출되는 기능을 개발할 때. Java, Python, Go 등의 클라이언트 라이브러리(SDK)는 객체 지향적인 JSON 구조(DSL)와 완벽하게 매핑됩니다. 코드로 쿼리를 조립하기에는 DSL이 훨씬 안정적입니다. * 상황 B: 정교한 검색 랭킹 튜닝 function_score, boosting, slop 등 검색 품질을 미세하게 조정하는 기능은 DSL만이 100% 지원합니다. PPL은 '분석'에 강하지만 '검색 랭킹' 제어력은 약합니다. * 상황 C: 초고성능 최적화가 필요한 고정 쿼리 수천만 건의 데이터를 0.1초 안에 조회해야 하는 API 백엔드. DSL은 필터 캐싱, 라우팅 제어 등 엔진 내부의 최적화 기능을 극한까지 활용할 수 있는 세밀한 옵션들을 제공합니다.\ 3) 정리 지금까지 OpenSearch의 PPL(Piped Processing Language)에 대해 깊이 있게 살펴보았습니다. 과거에는 OpenSearch 데이터를 분석하려면 'JSON 괄호와의 싸움'을 피할 수 없었습니다. 하지만 PPL의 등장으로 이제 SQL을 아는 개발자, 데이터 분석가, 심지어 비개발 직군까지도 데이터와 직접 대화할 수 있는 길이 열렸습니다. PPL이 가져온 변화는 명확합니다. - 직관성: 사고의 흐름대로 파이프(|)를 연결하여 로직을 구현합니다. - 생산성: 복잡한 집계 코드를 단 한 줄로 압축합니다. - 협업: 누구나 읽고 이해할 수 있는 코드로 팀 간 커뮤니케이션이 원활해집니다. 여러분의 데이터 인프라에 OpenSearch가 있다면, 오늘 당장 복잡한 JSON 대신 PPL을 입력해 보시길 권합니다. 단순히 쿼리 언어를 바꾸는 것을 넘어, 데이터 속에 숨겨진 인사이트를 발견하는 속도가 달라질 것입니다.
2026.01.07
다음 슬라이드 보기