반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
AI 인공지능
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
APM Solution
애플리케이션 관리
URL 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
최신이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
[브레인저가 알려주는 IT#1] 네트워크 관리, SNMP가 뭔가요?
카프카를 통한 로그 관리 방법
김채욱
2023.09.19
페이스북 공유하기
트위터 공유하기
링크드인 공유하기
블로그 공유하기
메모리 누수 위험있는 FinalReference 참조 분석하기
안녕하세요! 저는 개발4그룹에서 제니우스(Zenius) SIEM의 로그 관리 기능 개발을 담당하고 있는 김채욱 입니다. 제가 하고 있는 일은 실시간으로 대용량 로그 데이터를 수집하여 분석 후, 사용자에게 가치 있는 정보를 시각화하여 보여주는 일입니다.
이번 글에서 다룰 내용은
1) 그동안 로그(Log)에 대해 조사한 것과 2) 최근에 CCDAK 카프카 자격증을 딴 기념으로, 카프카(Kafka)를 이용하여 어떻게 로그 관리를 하는지
에 대해 이야기해 보겠습니다.
PART1. 로그
1. 로그의 표면적 형태
로그(Log)는 기본적으로 시스템의 일련된 동작이나 사건의 기록입니다. 시스템의 일기장과도 같죠. 로그를 통해 특정 시간에 시스템에서 ‘어떤 일’이 일어났는지 파악할 수도 있습니다. 이렇게 로그는 시간에 따른 시스템의 동작을 기록하고, 정보는 순차적으로 저장됩니다.
이처럼
로그의 핵심 개념은 ‘시간’
입니다. 순차적으로 발생된 로그를 통해 시스템의 동작을 이해하며, 일종의 생활기록부 역할을 하죠. 시스템 내에서 어떤 행동이 발생하였고, 어떤 문제가 일어났으며, 유저와의 어떤 교류가 일어났는지 모두 알 수 있습니다.
만약 시간의 개념이 없다면 어떻게 될까요? 발생한 모든 일들이 뒤섞이며, 로그 해석을 하는데 어려움이 생기겠죠.
이처럼 로그를 통해 시스템은 과거의 변화를 추적합니다. 똑같은 상황이 주어지면 항상 같은 결과를 내놓는 ‘결정론적’인 동작을 보장할 수 있죠. 로그의 중요성, 이제 조금 이해가 되실까요?
2. 로그와 카프카의 관계
자, 그렇다면! 로그(Log)와 카프카(Kafka)는 어떤 관계일까요? 우선 카프카는 분산 스트리밍 플랫폼으로서, 실시간으로 대용량의 데이터를 처리하고 전송하는데 탁월한 성능을 자랑합니다. 그 중심에는 바로 ‘로그’라는 개념이 있는데요. 좀 더 자세히 짚고 넘어가 보겠습니다.
3. 카프카에서의 로그 시스템
카프카에서의 로그 시스템은, 단순히 시스템의 에러나 이벤트를 기록하는 것만이 아닙니다. 연속된 데이터 레코드들의 스트림을 의미하며, 이를 ‘토픽(Topic)’이라는 카테고리로 구분하죠. 각 토픽은 다시 *파티션(Partition)으로 나누어, 단일 혹은 여러 서버에 분산 저장됩니다. 이렇게 분산 저장되는 로그 데이터는, 높은 내구성과 가용성을 보장합니다.
*파티션(Partition): 하드디스크를 논리적으로 나눈 구역
4. 카프카가 로그를 사용하는 이유
로그의 순차적인 특성은 카프카의 ‘핵심 아키텍처’와 깊게 연결되어 있습니다. 로그를 사용하면,
데이터의 순서를 보장할 수 있어 대용량의 데이터 스트림을 효율적
으로 처리할 수 있기 때문이죠. 데이터를 ‘영구적’으로 저장할 수 있어,
데이터 손실 위험 또한 크게 줄어
듭니다.
로그를 사용하는 또 다른 이유는 ‘장애 복구’
입니다. 서버가 장애로 인해 중단되었다가 다시 시작되면, 저장된 로그를 이용하여 이전 상태로 복구할 수 있게 되죠. 이는 ‘카프카가 높은 가용성’을 보장하는 데 중요한 요소입니다.
∴
로그 요약
로그는 단순한 시스템 메시지를 넘어 ‘데이터 스트림’의 핵심 요소로 활용됩니다. 카프카와 같은 현대의 데이터 처리 시스템은
로그의 이러한 특성을 극대화하여, 대용량의 실시간 데이터 스트림을 효율적으로 처리
할 수 있는 거죠. 로그의 중요성을 다시 한번 깨닫게 되는 순간이네요!
PART2. 카프카
로그에 이어 에 대해 설명하겠습니다. 들어가기에 앞서 가볍게 ‘구조’부터 알아가 볼까요?
1. 카프카 구조
· 브로커(Broker)
브로커는 *클러스터(Cluster) 안에 구성된 여러 서버 중 각 서버를 의미합니다. 이러한 브로커들은, 레코드 형태인 메시지 데이터의 저장과 검색 및 컨슈머에게 전달하고 관리합니다.
*클러스터(Cluster): 여러 대의 컴퓨터들이 연결되어 하나의 시스템처럼 동작하는 컴퓨터들의 집합
데이터 분배와 중복성도 촉진합니다. 브로커에 문제가 발생하면, 데이터가 여러 브로커에 데이터가 복제되어 데이터 손실이 되지 않죠.
·
프로듀서(Producer)
프로듀서는 토픽에 레코드를 전송 또는 생성하는 *엔터티(Entity)입니다. 카프카 생태계에서 ‘데이터의 진입점’ 역할도 함께 하고 있죠. 레코드가 전송될 토픽 및 파티션도 결정할 수 있습니다.
*엔터티(Entity): 업무에 필요한 정보를 저장하고 관리하는 집합적인 것
·
컨슈머(Consumer)
컨슈머는 토픽에서 레코드를 읽습니다. 하나 이상의 토픽을 구독하고, 브로커로부터 레코드를 소비합니다. 데이터의 출구점을 나타내기도 하며, 프로듀서에 의해 전송된 메시지를 최종적으로 읽히고 처리되도록 합니다.
·
토픽(Topic)
토픽은 프로듀서로부터 전송된 레코드 카테고리입니다. 각 토픽은 파티션으로 나뉘며, 이 파티션은 브로커 간에 복제됩니다.
카프카로 들어오는 데이터를 조직화하고, 분류하는 방법을 제공하기도 합니다. 파티션으로 나눔으로써 카프카는 ‘수평 확장성과 장애 허용성’을 보장합니다.
·
주키퍼(ZooKeeper)
주키퍼는 브로커를 관리하고 조정하는 데 도움을 주는 ‘중앙 관리소’입니다. 클러스터 노드의 상태, 토픽 *메타데이터(Metadata) 등의 상태를 추적합니다.
*메타데이터(Metadata): 데이터에 관한 구조화된 데이터로, 다른 데이터를 설명해 주는 데이터
카프카는 분산 조정을 위해 주키퍼에 의존합니다. 주키퍼는 브로커에 문제가 발생하면, 다른 브로커에 알리고 클러스터 전체에 일관된 데이터를 보장하죠.
∴
카프카 구조 요약
요약한다면 카프카는
1) 복잡하지만 견고한 아키텍처 2) 대규모 스트림 데이터를 실시간으로 처리하는 데 있어 안정적이고 장애 허용성이 있음 3) 고도로 확장 가능한 플랫폼을 제공
으로 정리할 수 있습니다.
이처럼 카프카가 큰 데이터 환경에서 ‘어떻게’ 정보 흐름을 관리하고 최적화하는지 5가지의 구조를 통해 살펴보았습니다. 이제 카프카에 대해 조금 더 명확한 그림이 그려지지 않나요?
2. 컨슈머 그룹과 성능을 위한 탐색
카프카의 가장 주목할 만한 특징 중 하나는
‘컨슈머 그룹의 구현’
입니다. 이는 카프카의 확장성과 성능 잠재력을 이해하는 데 중심적인 개념이죠.
컨슈머 그룹 이해하기
카프카의 핵심은
‘메시지를 생산하고 소비’
하는 것입니다. 그런데 수백만, 심지어 수십억의 메시지가 흐르고 있을 때 어떻게 효율적으로 소비될까요?
여기서 컨슈머 그룹(Consumer Group)이 등장합니다. 컨슈머 그룹은, 하나 또는 그 이상의 컨슈머로 구성되어 하나 또는 여러 토픽에서 메시지를 소비하는데 협력합니다. 그렇다면 왜 효율적인지 알아보겠습니다.
·
로드 밸런싱:
하나의 컨슈머가 모든 메시지를 처리하는 대신, 그룹이 부하를 분산할 수 있습니다. 토픽의 각 파티션은 그룹 내에서 정확히 하나의 컨슈머에 의해 소비됩니다. 이는 메시지가 더 빠르고 효율적으로 처리된다는 것을 보장합니다.
·
장애 허용성:
컨슈머에 문제가 발생하면, 그룹 내의 다른 컨슈머가 그 파티션을 인수하여 메시지 처리에 차질이 없도록 합니다.
·
유연성:
데이터 흐름이 변함에 따라 그룹에서 컨슈머를 쉽게 추가하거나 제거합니다. 이에 따라 증가하거나 감소하는 부하를 처리할 수 있습니다.
여기까지는 최적의 성능을 위한 ‘카프카 튜닝 컨슈머 그룹의 기본 사항’을 다루었으니, 이와 관련된 ‘성능 튜닝 전략’에 대해 알아볼까요?
성능 튜닝 전략
·
파티션 전략:
토픽의 파티션 수는, 얼마나 많은 컨슈머가 활성화되어 메시지를 소비할 수 있는지 영향을 줍니다. 더 많은 파티션은 더 많은 컨슈머가 병렬로 작동할 수 있음을 의미하는 거죠. 그러나 너무 많은 파티션은 *오버헤드를 야기할 수 있습니다.
*오버헤드: 어떤 처리를 하기 위해 간접적인 처리 시간
·
컨슈머 구성:
*fetch.min.bytes 및 *fetch.max.wait.ms와 같은 매개변수를 조정합니다. 그다음 한 번에 얼마나 많은 데이터를 컨슈머가 가져오는지 제어합니다. 이러한 최적화를 통해 브로커에게 요청하는 횟수를 줄이고, 처리량을 높입니다.
*fetch.min.bytes: 한 번에 가져올 수 있는 최소 데이터 사이즈 *fetch.max.wait.ms: 데이터가 최소 크기가 될 때까지 기다릴 시간
·
메시지 배치:
프로듀서는 메시지를 함께 배치하여 처리량을 높일 수 있게 구성됩니다. *batch.size 및 *linger.ms와 같은 매개변수를 조정하여, 대기 시간과 처리량 사이의 균형을 찾을 수 있게 되죠.
*batch.size: 한 번에 모델이 학습하는 데이터 샘플의 개수 *linger.ms: 전송 대기 시간
·
압축:
카프카는 메시지 압축을 지원하여 전송 및 저장되는 데이터의 양을 줄입니다. 이로 인해 전송 속도가 빨라지고 전체 성능이 향상될 수 있습니다.
·
로그 정리 정책:
카프카 토픽은, 설정된 기간 또는 크기 동안 메시지를 유지할 수 있습니다. 보존 정책을 조정하면, 브로커가 저장 공간이 부족해지는 점과 성능이 저하되는 점을 방지할 수 있습니다.
3. 컨슈머 그룹과 성능을 위한 실제 코드 예시
다음 그림과 같은 코드를 보며 조금 더 자세히 살펴보겠습니다. NodeJS 코드 중 일부를 발췌했습니다. 카프카 설치 시에 사용되는 설정 파일 *server.properties에서 파티션의 개수를 CPU 코어 수와 같게 설정하는 코드입니다. 이에 대한 장점들을 쭉 살펴볼까요?
*server.properties: 마인크래프트 서버 옵션을 설정할 수 있는 파일
CPU 코어 수에 파티션 수를 맞추었을 때의 장점
·
최적화된 리소스 활용:
카프카에서는 각 파티션이 읽기와 쓰기를 위한 자체 *I/O(입출력) 스레드를 종종 운영합니다. 사용 가능한 CPU 코어 수와 파티션 수를 일치시키면, 각 코어가 특정 파티션의 I/O 작업을 처리합니다. 이 동시성은 리소스에서 최대의 성능을 추출하는 데 도움 됩니다.
·
최대 병렬 처리:
카프카의 설계 철학은 ‘병렬 데이터 처리’를 중심으로 합니다. 코어 수와 파티션 수 사이의 일치는, 동시에 처리되어 처리량을 높일 수 있습니다.
·
간소화된 용량 계획:
이 접근 방식은, 리소스 계획에 대한 명확한 기준을 제공합니다. 성능 병목이 발생하면 CPU에 *바인딩(Binding)되어 있는지 명확하게 알 수 있습니다. 인프라를 정확하게 조정할 수도 있게 되죠.
*바인딩(Binding): 두 프로그래밍 언어를 이어주는 래퍼 라이브러리
·
오버헤드 감소:
병렬 처리와 오버헤드 사이의 균형은 미묘합니다. 파티션 증가는 병렬 처리를 촉진할 수 있습니다. 하지만 더 많은 주키퍼 부하, 브로커 시작 시간 연장, 리더 선거 빈도 증가와 같은 오버헤드도 가져올 수도 있습니다. 파티션을 CPU 코어에 맞추는 것은 균형을 이룰 수 있게 합니다.
다음은 프로세스 수를 CPU 코어 수만큼 생성하여, 토픽의 파티션 개수와 일치시킨 코드에 대한 장점입니다.
파티션 수와 컨슈머 프로세스 수 일치의 장점
·
최적의 병렬 처리:
카프카 파티션의 각각은 동시에 처리될 수 있습니다. 컨슈머 수가 파티션 수와 일치하면, 각 컨슈머는 특정 파티션에서 메시지를 독립적으로 소비할 수 있게 되죠. 따라서 병렬 처리가 향상됩니다.
·
리소스 효율성:
파티션 수와 컨슈머 수가 일치하면, 각 컨슈머가 처리하는 데이터의 양이 균등하게 분배됩니다. 이로 인해 전체 시스템의 리소스 사용이 균형을 이루게 되죠.
·
탄력성과 확장성:
트래픽이 증가하면, 추가적인 컨슈머를 컨슈머 그룹에 추가하여 처리 능력을 증가시킵니다. 동일한 방식으로 트래픽이 감소하면 컨슈머를 줄여 리소스를 절약할 수 있습니다.
·
고가용성과 오류 회복:
컨슈머 중 하나가 실패하면, 해당 컨슈머가 처리하던 파티션은 다른 컨슈머에게 자동 재분배됩니다. 이를 통해 시스템 내의 다른 컨슈머가 실패한 컨슈머의 작업을 빠르게 인수하여, 메시지 처리가 중단되지 않습니다.
마지막으로 각 프로세스별 컨슈머를 생성해서 토픽에 구독 후, 소비하는 과정을 나타낸 소스코드입니다.
∴
컨슈머 그룹 요약
컨슈머 그룹은 높은 처리량과 장애 허용성 있는 메시지 소비를 제공하는 능력이 핵심입니다. 카프카가 어떤 식으로 운영되는지에 대한 상세한 부분을 이해하고 다양한 매개변수를 신중하게 조정한다면, 어떠한 상황에서도 카프카의 최대 성능을 이끌어낼 수 있습니다!
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
©
참고 자료
· Jay Kreps, “I Hearts Logs”, Confluent
· 위키피디아, “Logging(computing)”
· Confluent, “https://docs.confluent.io/kafka/overview.html”
· Neha Narkhede, Gwen Shapira, Todd Palino, “Kafka: The Definitive Guide”
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
#LOG
#로그
#카프카
#컨슈머
#KAFKA
#SIEM
#제니우스
김채욱
개발4그룹
실시간 대용량 로그 데이터의 수집 및 가공에 관심을 가지고 있습니다. 함께 발전해 나가는 개발을 추구합니다.
필진 글 더보기
목록으로
추천 콘텐츠
이전 슬라이드 보기
옵저버빌리티 향상을 위한 제니우스 대표 기능들
옵저버빌리티 향상을 위한 제니우스 대표 기능들
이번 블로그에서는 지난 블로그에서 다루었던 옵저버빌리티를 구현하기 위한 오픈 소스들은 어떤 것들이 있는지 간략히 알아보고, 제니우스(Zenius-EMS)에서는 옵저버빌리티 향상을 위해서 어떤 제품들을 제공하고 있는 지 살펴보겠습니다. 옵저버빌리티 구현을 위해 널리 활용되는 대표적인 오픈소스로는 아래 네 가지 정도를 들 수 있습니다. l Prometheus: 메트릭 수집 및 저장을 전문으로 하는 도구입니다. Prometheus는 강력한 쿼리 기능을 가지고 있으며, 다양한 기본 메트릭을 제공하며 데이터 시각화를 위해 Grafana와 같은 도구와 통합될 수 있습니다. 또한 이메일, Slack 및 PagerDuty와 같은 다양한 채널을 통해 알림을 보낼 수 있습니다. l OpenTelemetry: 에이전트 추가 없이 원격으로 클라우드 기반의 애플리케이션이나 인프라에서 측정한 데이터, 트레이스와 로그를 백엔드에 전달하는 기술을 제공합니다. Java, Go, Python 및 .NET을 포함한 다양한 언어를 지원하며 추적 및 로그에 대한 통합 API를 제공합니다. l Jaeger: 분산 서비스 환경에서는 한번의 요청으로 서로 다른 마이크로서비스가 실행될 수 있습니다. Jaeger는 서비스 간 트랜잭션을 추적하는 기능을 가지고 있는 오픈 소스 소프트웨어입니다. 이 기능을 통해 애플리케이션 속도를 저해하는 병목지점을 찾을 수 있으며 동작에 문제가 있는 애플리케이션에서 문제의 시작점을 찾는데 유용합니다. l Grafana: 시계열 메트릭 데이터를 시각화 하는데 필요한 도구를 제공하는 툴킷입니다. 다양한 DB를 연결하여 데이터를 가져와 시각화 할 수 있으며, 그래프를 그릴 수도 있습니다. 시각화한 그래프에서 특정 수치 이상일 때 알람 기능을 제공하며 다양한 플러그인으로 기능확장이 가능합니다. ------------------------------------------------- 오픈 기술을 이용해 Do It Yourself 방식으로 옵저버빌리티를 구현한다면 어떨까요? 직접 옵저버빌리티를 구현하기 위해서는 먼저 필요한 데이터를 수집해야 합니다. 필요한 데이터가 무엇인지, 어떤 방식으로 수집할지 결정하고 Prometheus, OpenTelemetry 같은 도구들을 이용해 설치 및 설정합니다. 이 단계는 시간이 가장 오래 걸리고, 나중에 잘못된 구성이나 누락이 발견되기도 합니다. 다음 단계는 데이터 저장입니다. 이 단계에서 주의할 점은 예전처럼 여러 소스에서 수집한 데이터를 단순하게 저장하는 것이 아니라, 전체적인 관점에서 어떤 이벤트가 일어나는지를 추적이 가능하도록 데이터 간의 연결과 선후 관계를 설정하는 것입니다. 어려운 점은 새로운 클라우드 기술을 도입하거나 기존의 인프라나 애플리케이션에서 변경이 발생할 때마다 데이터를 계속해서 정리를 해야 하는데, 이를 위해 플랫폼을 지속적으로 수정하고 구성을 추가해야 한다는 것입니다. 마지막으로 부정확한 경고들은 제거해야 합니다. 비즈니스 상황과 데이터는 계속해서 변화하기 때문에 이에 맞게 베이스 라인을 지속적으로 확인하고, 임계치를 조정해서 불필요한 알람이나 노이즈 데이터가 생기는 것을 방지해야 합니다. 결론적으로 직접 옵저버빌리티를 구현하는 것은 처음에는 쉬워 보여도 고급 인력과 많은 시간을 확보해야 하며, 별개로 시간이 지남에 따라서 효율성과 확장성이 떨어진다는 점을 감안하면 대부분의 기업은 감당하기 어렵다고 할 수 있습니다. 그렇다면, Zenius(제니우스) EMS는 옵저버빌리티를 어떻게 확보하고 있을까요? 옵저버빌리티 향상을 위한 가장 기본적인 기능은 토폴로지맵 또는 대시보드입니다. 다양한 인프라의 물리적 논리적 연결구조들을 한 눈에 시각적으로 파악할 수 있도록 해야 합니다. Zenius는 각 인프라별 상황을 한 눈에 볼 수 있는 오버뷰와 시스템 전체를 조망할 수 있는 토폴로지맵, 그리고 서비스 별 상황들을 감시할 수 있는 대시보드 등 크게 세가지의 뷰어(Viewer)를 제공합니다. 인프라의 구성 상황에 따라 다층적으로 구성되어 고객들이 인프라에서 일어나는 상황을 즉각 알 수 있도록 해 줍니다. 이러한 뷰어들은 기존 ‘모니터링’의 개념에서 ‘옵저버빌리티’ 개념으로 진화화면서 좀 더 다층적, 다양화되는 형태로 진화하고 있습니다. 또한, Zenius는 기존의 각 인프라별로 단순히 감시를 설정하는 방식이 아닌 다양한 인프라로부터의 로그와 메트릭 정보를 이용해 어떤 상관관계가 있는지 분석하는 ‘복합감시’라는 서비스가 기본적으로 탑재돼 있습니다. 복합감시를 대표 기능에는 ERMS(Event Relation Management System), 스냅샷 그리고 조치 자동화 등을 들 수 있습니다. l ERMS 기능은 로깅, 메트릭 정보와 장비의 상태를 이용해 새로운 감시 기준을 만들어, 의미있는 이벤트를 생성해 사용자에게 개별 장비 수준이 아닌 서비스 관점에서 정확한 상황 정 보를 제공합니다. l 스냅샷은 서비스 동작에서 이벤트가 발생했을 때, 당시 상황을 Rawdata 기반으로 그대로 재현하는 기능으로 SMS, DBMS, APM, NMS 등 모든 인프라를 동시에 볼 수 있습니다. l 조치 자동화는 ERMS를 자동운영시스템과 연동해, 특정 상황에서 자동으로 스크립트를 실행해 제어하는 기능입니다. 트레이싱 기능은 APM에서 제공하는 기능으로, WAS(Web Application Server)에 인입되고 처리되는 모든 트랜잭션들을 실시간으로 모니터링하고 지연되고 있는 상황을 토폴로지 뷰를 통해 가시적으로 분석할 수 있습니다. 사용자는 토폴로지 뷰를 통해 수행 중인 액티브 트랜잭션의 상세정보와 WAS와 연결된 DB, 네트워크 등 여러 노드들 간의 응답속도 및 시간들을 직관적으로 파악할 수 있습니다. 제니우스의 또 다른 옵저버빌리티는 인공지능 기반의 미래 예측 기능으로 미래 상황을 시각적으로 보여줍니다. 인프라 종류에 상관없이 인공신경망 등 다양한 알고리즘을 통해 미래 데이터를 생성하고, 장애발생 가능성을 빠르게 파악해 서비스 다운타임이 없도록 도와줍니다. 또한 이상 탐지 기능은 보안 침해 또는 기타 비정상적인 활동을 나타낼 수 있는 시스템 로그, 메트릭 및 네트워크 트래픽의 비정상적인 패턴을 식별할 수 있습니다. 이상탐지 알고리즘은 시간이 지남에 따라 시스템 동작의 변화에 적응하고 새로운 유형의 위협을 식별하는 방법을 학습할 수 있습니다. 이상과 같이 Zenius(제니우스) EMS는 최고의 옵저버빌리티를 제공하기 위해서 연구개발에 매진하고 있습니다. 옵저버빌리티 향상을 위한 다양한 기능/제품들은 고객의 시스템과 조직 상황에 맞게 선별적으로 사용될 수 있습니다.
2023.04.19
2023년 상반기 협력업체 상생 세미나 성료…”신규 기능 소개, 상생 지속 도모”
2023년 상반기 협력업체 상생 세미나 성료…”신규 기능 소개, 상생 지속 도모”
지난 21일 본사 8층 대회의실에서 ‘2023년 상반기 협력업체 상생 세미나’를 진행했습니다. 브레인즈컴퍼니는 급변하는 IT인프라 시장 환경에 적극 대응하고 협력사와의 협력을 더욱 강화하기 위해 협력업체 상생 세미나를 운영하고 있습니다. 올해부터 세미나를 상, 하반기 2회 실시하기로 하였는데요, 기존에 EMS를 설치 및 활용하는 교육 중심에서 제니우스의 새로운 기능을 소개하는 중심으로 세미나에 변화를 주었습니다. 이날 행사는 먼저 프리세일즈팀에서 회사 소개를 하였고, 이어서 Technical Consulting 팀 정채린 차장이 제니우스 8.0의 신규 기능을 소개하였는데요, 20개 이상의 신규 기능에는 WNMS, ERMS, 웹토폴로지 등이 포함되어 있습니다. 그리고 막간을 이용해 통합로그관리, Zenius LogManager을 소개하는 시간도 가졌습니다. WNMS는 분산된 AP 장비의 상태를 한 곳에서 통합 모니터링할 수 있을 뿐만 아니라, AP 장비의 Up/Down 링크, WAN Traffic 등을 실시간으로 모니터링하고, AP 장비의 부하를 효율적으로 컨트롤하도록 접속자 수, 사용자 수, 최대 동시접속자 수 등의 근거데이터를 모니터링하고 자료로 확보할 수 있습니다. ERMS(Event Relation Management System)은 문제 원인 추적을 위한 이벤트의 연관성을 분석하는 기능입니다. 기존 서비스맵의 기능에 AND/OR, 이상 등의 다양한 연산조건 및 통보기능을 추가하여 개별적 이벤트가 아닌 복합적인 이상 상황을 감지할 수 있습니다. 웹토폴로지는 기존에는 CS 형식으로 제공되었던 토폴로지맵의 활용도를 높이기 위해 Web기반으로 구현하여 오버뷰와 함께 활용할 수 있도록 구현하였습니다. 마지막은 클라우드 모니터링을 소개하고 시현을 통해 클라우드 가상화 자원을 모니터링하여 가상 자원의 적절한 운영 효율성을 향상시킬 수 있는지 선 보였습니다. 이번 세미나에는 영진인포텍, 한신정보, 시원 등 협력업체 관계자뿐만 아니라 디와이, 더존비즈온 같은 고객사에서도 참여했습니다. 참여한 협력업체는 이런 형식의 세미나가 자주 있었으면 좋겠다, 그리고 정기적인 온라인 교육을 희망한다는 의견을 주셨습니다. 반면 참여한 고객사는 제니우스 8.0으로 업그레이드를 결정하는 데 많은 도움이 되었다고 합니다. 세미나를 주관한 소감은 “제품 중심으로 소개하는 세미나는 처음인데 예상보다 질문이 많았고 관심이 뜨거운 것을 보고 앞으로 제품을 소개하는 기회를 자주 가지면 좋겠다”입니다. 참여해 주신 모든 분께 감사 인사 전합니다.
2023.06.23
다음 슬라이드 보기