반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
AI 인공지능
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
APM Solution
애플리케이션 관리
URL 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
기술이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
기술이야기
검색
기술이야기
서버 모니터링 트렌드 살펴보기
기술이야기
서버 모니터링 트렌드 살펴보기
기업이나 조직의 IT 인프라 모니터링은 서버 모니터링에서 출발합니다. 통상적으로 서버 모니터링부터 네트워크, 데이터베이스, 웹애플리케이션, 전산설비 등으로 모니터링의 범위를 확장해 나가는 것이 일반적입니다. 서버는 초창기 메인 프레임부터 유닉스 서버, 리눅스 서버를 거쳐 최근의 가상화 서버에 이르기까지 물리적 및 논리적으로 그 성격이 변화해 왔습니다. 그에 따라 서버 모니터링의 관점도 많이 변모해 왔습니다. 기껏해야 1~2대 규모로 운영하던 메인 프레임의 시대와 수천, 수만대의 서버팜을 관리해야 하는 시대의 모니터링 개념은 달라야 합니다. 또, 가상화 시대를 맞아 물리적 서버 개념보다는 논리적 서버 개념이 중요해지고, 서버 1~2대의 장애 상황보다는 서버팜이 이루고 있는 서비스의 영속성이 중요해졌습니다. 이처럼 서버라는 인프라가 기술 발전에 따라 변모하고 있고, 그에 대응해 모니터링 콘셉트나 방법도 변화하고 있습니다. 이번 블로그에서는 서버 관련 새로운 인프라 개념 및 기술들이 대두되면서 변화하는 서버 모니터링의 새로운 트렌드에 관해 논의해 보고자 합니다. 1. 클라우드 네이티브 모니터링 더 많은 기업이나 조직이 전통적인 레거시 시스템에서 클라우드로 이동함에 따라 클라우드 모니터링의 필요성이 급격히 증가했습니다. 클라우드 네이티브 모니터링 도구는 Amazon Web Services(AWS), Microsoft Azure, Google Cloud Platform(GCP)과 같은 클라우드 환경에서 애플리케이션과 클라우드 인프라를 모니터링하도록 설계됐습니다. 또, 클라우드 인프라의 성능, 가용성 및 보안에 대한 실시간 인사이트를 제공해, IT운영부서가 문제를 신속하게 발견하고 해결할 수 있도록 지원합니다. 일반적인 클라우드 모니터링은 메트릭과 로그를 사용해 클라우드 인프라 및 애플리케이션 성능을 하나의 통합된 화면에 제공합니다. 또한 통합 IT 환경 측면에서는 컨테이너 오케스트레이션 플랫폼 및 서버리스 컴퓨팅과 같은 다른 클라우드 환경과 통합해 모니터링할 수도 있습니다. 클라우드 기반 모니터링의 최신 추세는 하이브리드 모니터링입니다. 조직은 하이브리드 모니터링을 통해 클라우드와 온프레미스에서 각각 실행 중인 서버 및 애플리케이션 모두를 단일 플랫폼에서 모니터링할 수 있습니다. 2. 인공지능과 머신러닝 서버 모니터링의 또 다른 트렌드는 인공 지능(AI)과 머신 러닝(ML)을 사용해 모니터링 과정을 자동화하는 것입니다. AI 및 ML 알고리즘은 모니터링 과정에서 생성된 방대한 양의 데이터를 분석하고 패턴을 식별해 이상 징후를 감지할 수 있습니다. 이는 실시간으로 수행될 수 있으므로 운영관리자는 발생하는 모든 문제에 신속하게 대응할 수 있습니다. ML 알고리즘은 과거 데이터를 분석해 트래픽이 가장 많은 시기나 잠재적 장애와 같은 미래 추세를 예측할 수 있습니다. 이를 위해 서버의 성능과 관련된 대규모 데이터 세트에서 ML 알고리즘을 교육해야 합니다. 이 데이터는 서버 로그, 시스템 메트릭, 애플리케이션 로그 및 기타 관련 정보가 해당됩니다. 다음으로 알고리즘을 학습해 다양한 메트릭 간의 패턴과 상관 관계를 식별하고 이상 징후와 잠재적 문제를 감지합니다. 머신 러닝 모델이 훈련되면 서버를 실시간으로 모니터링하도록 배포할 수 있으며, 모델은 지속적으로 서버 메트릭을 분석하고 이를 학습한 패턴과 비교합니다. 편차나 이상을 감지하면 문제를 해결하기 위해 경고 또는 자동화된 작업을 트리거할 수 있습니다. 예를 들어, 트래픽이 갑자기 증가하는 경우 리소스를 자동으로 Scaling 하거나 다운 타임을 방지하기 위해 다른 조치를 취할 수 있습니다. 전반적으로 인공 지능과 머신 러닝을 사용해 서버 모니터링을 자동화하면, 문제해결에 시간을 절약하고 인적 오류의 위험을 줄일 수 있습니다. 또, 심각한 문제로 번지기 전에 잠재적 문제를 식별해 서버 인프라의 전반적인 안정성과 가용성을 향상할 수 있습니다. 3. 컨테이너 모니터링 컨테이너가 애플리케이션 배포에 점점 더 많이 사용되면서, 컨테이너 모니터링은 서버 모니터링의 중요한 측면이 됐습니다. 컨테이너란 애플리케이션을 모든 인프라에서 실행하는데 필요한 모든 파일 및 라이브러리와 함께 번들로 제공하는 소프트웨어 배포 도구입니다. 컨테이너를 사용하면 모든 유형의 디바이스 및 운영 체제에서 실행되는 단일 소프트웨어 패키지를 만들 수 있습니다. 뿐만 아니라, 단일 시스템에서 한 컨테이너는 다른 컨테이너의 작업을 방해하지 않으므로 확장성이 뛰어나고, 결함이 있는 서비스가 다른 서비스에 영향을 주지 않아 애플리케이션의 복원력과 가용성이 향상되는 장점이 있습니다. 컨테이너 모니터링은 CPU 및 메모리 사용량과 같은 컨테이너 리소스 사용률에 대한 실시간 메트릭을 제공할 수 있습니다. 또, 애플리케이션이 의도한 대로 실행되고 있는지 확인하기 위해 Kubernetes(쿠버네티스)와 같은 컨테이너 오케스트레이션 플랫폼을 모니터링하고, 컨테이너 및 기본 인프라에 대한 실시간 가시성을 제공합니다. 4. 서버리스 모니터링 서버리스 컴퓨팅은 사용량에 따라 백엔드 서비스를 제공하는 방법으로, 개발자가 서버를 관리할 필요없이 애플리케이션을 빌드하고 실행하는 것을 가능하게 합니다. 서버리스 컴퓨팅은 벤더 종속성(Vendor lock-in), 콜드 스타드와 DB백업이나 영상 인코딩 등 단시간에 많은 컴퓨팅 용량이 필요한 경우, 효율적이지 않음에도 불구하고 최근 몇 년 동안 주목을 받아오며 서버리스 모니터링이 서버 모니터링의 새로운 트렌드가 됐습니다. 서버리스 모니터링은 CPU, 메모리, 디스크 사용량 등 리소스 사용률, 애플리케이션 성능, 호출 시간 및 오류율과 같은 기능 성능에 대한 실시간 인사이트를 제공합니다. 서버리스 모니터링은 데이터베이스 쿼리 성능과 같은 서버리스 함수의 종속성에 대한 인사이트도 제공합니다. 5. 마이크로서비스 모니터링 마이크로서비스는 하나의 큰 애플리케이션을 여러 개의 작은 기능으로 쪼개어 변경과 조합이 가능하도록 만든 아키텍처로, 각 서비스를 다른 서비스와 독립적으로 개발, 배포 및 확장할 수 있는 장점이 있습니다. 하지만 마이크로서비스는 일반적으로 분산된 환경에 배포되므로 성능을 추적하고 문제를 찾아내기가 어렵고, 독립적으로 설계됐으므로 호환성에 어떤 문제가 있는지 감지할 필요가 있어 마이크로서비스 모니터링이 필요합니다. 마이크로서비스 모니터링은 개별 마이크로서비스 및 전체 애플리케이션의 성능과 상태를 추적하는 프로세스로 로그, 메트릭 및 트레이스와 같은 다양한 소스에서 데이터를 수집하고 분석해 문제를 식별하고 성능을 최적화하는 작업입니다. 마이크로서비스 모니터링은 각 마이크로서비스 별 가용성, 응답 시간, 가동 시간, 지연 시간, 오류율을 포함합니다. CPU, 메모리, 디스크 사용량과 같은 리소스 사용률을 추적해 잠재적인 성능 병목 현상이나 리소스 제약을 식별할 수 있고, 마이크로서비스 간의 데이터 흐름을 추적하고 서비스 간의 종속성 추적을 모니터링합니다. 또, 마이크로서비스 모니터링은 애플리케이션 전체의 전반적인 상태와 성능뿐만 아니라 타사 서비스 및 API의 성능과 상태도 모니터링할 수 있습니다. ----------------------------------- 브레인즈컴퍼니는 꾸준히 연구개발에 매진해 상기와 같은 새로운 트렌드를 반영한 Zenius-EMS를 개발, 출시했습니다. Zenius-EMS는 고객들이 레거시 시스템에서부터 클라우드 네이티브 시스템에 이르기까지 다양한 관점의 서버모니터링을 할 수 있도록 지원합니다. *이미지 출처: Unsplash, flaction
2023.03.29
기술이야기
Monitoring vs Observability, 모니터링과 옵저버빌리티 이해하기
기술이야기
Monitoring vs Observability, 모니터링과 옵저버빌리티 이해하기
옵저버빌리티는 "무슨 일이 일어났는가?", "왜 그런 일이 일어났는가?"와 같은 질문에 답하는 것을 목표로 합니다. 옵저버빌리티는 IT시스템 전체적인 관점에서 문제를 신속하게 식별하고 근본 원인을 분석할 수 있습니다. 최근 IT 인프라의 종류가 다양해지고, 수가 기하급수적으로 많아지고, 복잡도가 급격히 증가함에 따라 IT 인프라의 가용성을 보장하기 위해서 전통적으로 행해지던 모니터링의 범주를 넘어서는 옵저버빌리티라는 개념이 등장했습니다. 모니터링과 옵저버빌리티라는 두 용어들은 때로는 비슷한 개념으로 서로 바꿔서 사용되기도 하지만, 시스템 관리에 대한 다른 접근 방식을 나타냅니다. 이번 블로그에서는 모니터링과 옵저빌리티의 차이점을 알아보겠습니다. Monitoring이란? 모니터링은 IT 시스템에서 CPU 사용량, 메모리 사용량, 네트워크 트래픽과 같은 데이터를 수집하고 분석해 성능과 동작을 파악하는 것입니다. 모니터링의 목표는 시스템에 문제가 있는 것으로 추정되는 이상한 동작이나 조건을 감지하고 경고하는 것입니다. 모니터링은 종종 문제를 나타낼 수 있는 특정 메트릭이나 이벤트에 대한 알람 설정을 포함합니다. 이 접근 방식은 일반적으로 예측 가능한 개별 시스템에 사용합니다. 전통적인 모니터링 방법은 일정한 간격으로 수집되는 사전 정의된 메트릭이나 로그에 의존합니다. 예를 들어, 서버의 CPU 사용량을 1분마다 확인하고 사용량이 특정 임계값을 초과하면 알람을 보낼 수 있습니다. 이러한 방식은 특정 유형의 문제를 감지하는 데 효과적이지만, IT 시스템 동작을 전체적으로 파악하거나 근본 원인 분석에 대한 심층적인 인사이트는 제한적일 수 있습니다. Observability란? 옵저버빌리티는 IT 시스템 관리에 대한 새로운 접근 방식으로, 시스템의 내부 동작을 이해하는 것에 중점을 둡니다. 옵저버빌리티의 목표는 시스템의 동작을 깊이 이해하고 발생 가능한 모든 문제의 근본 원인을 파악하는 것입니다. 옵저버빌리티는 메트릭, 추적, 로그 등을 실시간으로 수집하고 분석하는 것을 포함합니다. 참고로 메트릭은 CPU 사용량, 메모리 사용량, 네트워크 트래픽과 같은 시스템 성능과 관련된 정량적 정보를, 추적은 요청의 호출 순서 및 응답 시간과 같은 시스템 동작에 대한 정보를, 로그는 사용자 작업 및 오류를 포함해 시스템 활동을 제공합니다. 옵저버빌리티가 필요한 이유 옵저버빌리티는 복잡하고 동적인 시스템에서는 문제를 빠르게 찾고 해결하기 위해 시스템의 동작과 성능을 측정하고 분석할 필요가 있습니다. 옵저버빌리티를 통해 다음과 같은 이점을 얻을 수 있습니다. 옵저버빌리티가 필요한 이유 1. 문제 해결 속도 향상: 옵저버빌리티를 사용하면 복잡한 시스템에서 발생하는 문제를 더욱 빠르게 파악할 수 있습니다. 이를 통해 시스템 장애나 성능 저하와 같은 문제를 빠르게 해결할 수 있습니다. 2. 전체 시스템 이해도 증가: 옵저버빌리티를 사용하면 전체 시스템의 내부 동작을 쉽게 이해할 수 있습니다. 이는 문제를 예방하거나 빠르게 대처할 수 있도록 도와줍니다. 3. 대규모 시스템 관리 가능: 대규모 분산 시스템에서는 옵저버빌리티가 필수적입니다. 이를 통해 수많은 서버, 네트워크, 애플리케이션 등에서 발생하는 다양한 데이터를 수집하고 분석할 수 있습니다. 4. 문제 예방 및 최적화: 옵저버빌리티를 사용하면 시스템의 성능을 지속적으로 모니터링하고 문제를 예방할 수 있습니다. 또한 시스템의 최적화를 위해 데이터를 분석하고 개선할 수 있습니다. 따라서, 옵저버빌리티는 복잡한, 여러 개의 세분화된 시스템으로 구성된 전체 시스템에서 필수적인 도구로, 시스템의 성능 개선과 장애 대응 등 다양한 측면에서 가치를 제공합니다. Monitoring vs Observability 모니터링과 달리, 옵저버빌리티는 사전에 정의된 메트릭과 알람에 의존하는 대신, 시스템 동작의 더욱 전체적인 관점을 제공합니다. 옵저버빌리티는 여러 소스에서 수집한 데이터를 같이 분석함으로써 쉽게 찾을 수 없는 어떤 패턴과 상관관계를 발견하는 데 도움을 줄 수 있습니다. 이 접근 방식은 예측할 수 없는 동작을 가진 복잡한 시스템에서 특히 유용합니다. 모니터링과 옵저버빌리티의 또 다른 중요한 차이점은 사람의 개입 수준입니다. 모니터링은 특정 이벤트 또는 조건을 감지하고 해당 이벤트 또는 조건이 발생할 때 경고를 트리거하도록 설계되므로 모니터링을 설정하고 구성하는데 사람의 개입이 필요할 수 있지만 일단 도구가 셋업되면 사람의 개입 없이 자동으로 작동하는 편입니다. 반면에, 옵저버빌리티는 데이터를 해석하고 결정을 내리고 조치를 취하는데 IT 운영자의 전문 지식을 사용해 프로세스에 관여합니다. 이러한 접근 방식은 시간이 더 많이 소요될 수 있지만, 문제의 근본 원인에 대한 더 많은 인사이트를 제공할 수도 있습니다. 올바른 어프로치 선택하기 모니터링과 옵저버빌리티는 각각 장단점이 있으며, 시스템의 특정 요구사항에 따라 어떤 접근 방식을 선택할지 달라져야 합니다. 비교적 상황 파악이 어렵지 않은 간단한 시스템의 경우, 전통적인 모니터링 도구로 충분할 수 있습니다. 그러나 복잡하고 시스템이 분산된 경우, 시스템 동작을 완전히 이해하기 위해 옵저버빌리티가 필요할 수 있습니다. 결국, 효과적인 시스템 관리의 핵심은 문제를 빠르게 감지하고 해결하기 위한 적절한 도구와 프로세스를 갖추는 것입니다. 모니터링 또는 옵저버빌리티를 선택하든, 시스템과 조직의 요구에 부합하는지 정기적으로 검토하고 개선하는 것이 중요합니다. 적절한 도구와 프로세스에 투자함으로써, 시스템의 신뢰성과 성능을 개선하고 비용이 많이 드는 다운타임과 서비스 중단을 피할 수 있습니다. Zenius EMS 브레인즈컴퍼니는 20년 이상 축적된 노하우를 바탕으로 레거시 환경은 물론 최근 더욱 복잡해지고 있는 클라우드 네이티브 시스템까지 모니터링과 옵저버빌리티 모두를 제공함으로써 고객이 원하는 방식으로 사용이 가능합니다. Zenius EMS는 SMS, NMS, APM 등 각 인프라별 모니터링을 통합해 시스템을 더욱 안정성 있게 관리하고 자동화된 장애대응 환경을 제공하며 객관적인 데이터 기반으로 리포팅이 가능한 지능형 IT 성능 모니터링입니다. 또한 쿠버네티스, 오픈 스택을 지원하는 클라우드 환경을 모니터링합니다. 국내 공공분야 관제 SW 1위, 제니우스의 상관관계 분석, 인공지능을 활용한 성능예측 등 옵저버빌리티 기술을 통해 다양한 시스템 레이어에서 성능, 장애, 구성에 대한 인사이트를 얻으시기 바랍니다.
2023.03.28
기술이야기
통합로그관리가 필요한 3가지 이유
기술이야기
통합로그관리가 필요한 3가지 이유
로그는 IT 인프라에서 발생하는 모든 상황들을 기록한 데이터입니다. 쉽게 말해 사용자가 어떤 루트로 사이트에 접속했고, 접속한 시점부터 어떤 행동을 취했는지가 모두 기록으로 남게 되는데, 이 기록들이 로그입니다. 로그는 IT 환경에서 가장 많이 발생하지만, 데이터 처리 기술이 발달하지 않았던 시기에는 처리 비용에 비해 가치가 낮은 데이터로 여겨졌습니다. 하지만 최근들어 IT 서비스와 인프라가 다양해지고 디지털 트랜스포메이션이 가속화되면서, 로그의 양이 기하급수적으로 증가하고 사물인터넷(IoT), 빅데이터 등과 같은 신기술이 발전하면서 그 효용성 또한 날로 증가하고 있습니다. 그렇다면, 이 로그는 실제로 어떻게 활용될까요? 개발 영역에서는 버그 혹은 크래시율 수집 및 상시 트래킹, 이슈 발생 후 롤백 및 대응, 특정 기능에 대한 사용성 진단에 활용됩니다. 마케팅 분야는 채널별 ROI 진단 및 비용 최적화, 배너/프로모션/이벤트 효과 측정, 유저 세그멘테이션 및 타게팅에 사용합니다. 기획 및 디자인 영역은 기능 개선을 위한 A/B 테스트, 유저 Journey 경로 분석을 통한 UX/UI 최적화 등에서 쓰이고 있습니다. 이처럼 여러 영역에서 다양하게 쓰이는 로그를 관리하지 않고 방치해두면 어떤 일이 발생할까요? 통합로그관리가 필요한 이유에 대해 알아보겠습니다. ----------------------------------------------- I. 보안 대응체계 구축 저장만 하고 관리되지 않은 로그는 IT 시스템의 장애나 문제 발생 시 그 원인을 찾아내기가 어렵습니다. 또, 로그 데이터의 중요 정보가 외부로 유출될 위험도 커집니다. 끊임없이 발생하는 보안 사고에 대비하기 위해 통합로그관리는 반드시 필요합니다. 관리된 로그는 장애나 사고 발생 시에 그 원인을 파악하고 빠른 대처를 위한 근거 데이터로 사용할 수 있으며, 보안 체계를 마련하는 데에도 활용가능 합니다. 기업들은 로그관리 제품을 사용해 사이버 침해위협을 예방 및 감시하고, 정기적인 로그분석을 통해 강력한 보안대응체계를 구축하고 있습니다. 통합로그관리 솔루션은 보안장비(Firewall, IDC, IPS 등)의 로그와 해킹, 악성코드 등 보안/침해 관련 로그를 지속적으로 분석해 예방 체계를 구축합니다. 또, 대용량 로그의 상관분석을 통해 보안위협을 탐지하고 이상징후를 모니터링하는 등 강력한 보안 대응체계를 구축할 수 있습니다. II. 컴플라이언스 준수 로그는 보안 사고가 발생했을 때 가장 기본적인 증거 및 모니터링 자료로 활용됩니다. 이에 따라 정부에서는 데이터 관리에 대해 각종 법률을 규정하고 있어, 공공기관을 비롯한 개인정보를 다루는 온라인 사업자 및 기업 등은 해당 법규를 준수해야 합니다. 안전한 데이터 이용을 위해 2018년에 발의된 '데이터 3법' 개정안은 2020년 1월 9일 국회 본회의를 통과했습니다. 데이터 3법은 개인정보 보호법, 정보통신망 이용촉진 및 정보보호 등에 관한 법률, 신용정보의 이용 및 보호에 관한 법률 등 3가지 법률을 통칭합니다. 로그 관리 관련 규제의 주요 내용은 다음과 같습니다. i. 개인정보보호를 위해 접근 권한 부여, 변경 또는 말소 기록을 3년 이상 보관해야 합니다. ii. 개인정보 취급자는 개인정보처리시스템의 접속기록을 월 1회 이상 점검해야 하고, 그 활동의 증거를 남기기 위해 시스템에 접속했다는 기록을 1년 이상 보관해야 합니다. iii. 정보통신서비스 제공자는 접근 권한 내역을 5년간 보관하고, 접속 기록의 위·변조 방지를 위해 반드시 백업 보관해야 합니다. III. 빅데이터 처리 플랫폼 IT 인프라 확대 및 기타 비정형 로그 유입에 따라 대용량 로그에 대한 관리가 요구되고 있습니다. 특히 수집된 로그를 실시간으로 분석∙판단해 IT 서비스의 안정적 운영을 도모해야 하는 수요가 증대되고 있는데요. 오늘날의 데이터는 기존 데이터에 비해 양이 매우 방대해 기존 방법이나 도구로는 관리가 어렵습니다. 따라서 빅데이터 기술을 기반으로 하는 대용량 통합 로그관리 솔루션은 이제 IT 운영을 위한 필수 솔루션으로 자리잡았습니다. ----------------------------------------------- 이처럼 기업은 보안위협 및 이상징후 대응/컴플라이언스 준수/대용량 로그 관리를 위해 통합로그관리 솔루션을 필수로 갖춰야합니다. 브레인즈컴퍼니의 통합로그관리 솔루션 '제니우스(Zenius) Logmanager'는 이기종 장비에서 발생되는 정형∙비정형 로그 데이터의 수집/분석/관리 등을 위한 빅데이터 플랫폼입니다. 제니우스 로그매니저가 어떻게 구성돼 있는지 살펴보겠습니다. 제니우스 로그매니저는 정형/반정형 또는 비정형 로그에 대한 실시간 수집 및 신속한 분석 기능을 제공하며, 이러한 정보들을 다양한 차트와 대시보드를 통해 직관적으로 가시화합니다. 특히 로그매니저는 독보적인 인덱싱 및 검색 속도를 제공하며 확장성, 편의성, 효율성, 호환성 등의 특장점을 보유한 제품입니다. 로그 이벤트 발생 시 즉각적인 알람을 통해 빠른 문제 해결과 높은 가용성을 확보하도록 지원합니다.
2022.11.10
기술이야기
IT 인프라 모니터링 트렌드
기술이야기
IT 인프라 모니터링 트렌드
EMS란? EMS는 Enterprise Management System의 약자로, 여러 기업과 기관의 IT서비스를 이루는 다양한 IT Infrastructure를 통합적으로 모니터링하는 시스템을 의미합니다. 해외에서는 일반적으로 ITIM(IT Infra Management)이라는 용어로 많이 사용되고 있지만, 국내에서는 EMS라는 용어로 통용되고 있습니다. EMS는 IT인프라의 데이터를 실시간으로 수집 및 분석할 뿐만 아니라, 수집된 데이터를 활용해 비즈니스의 가치를 창출할 수 있습니다. 글로벌 IT분야 연구자문 기업인 “가트너(Gartner)”에서는 ITIM, 즉 EMS를 데이터센터, Edge, IaaS(Infrastructure as a Service), PaaS(Platform as a Service) 등에 존재하는 IT인프라 구성요소의 상태와 리소스 사용률을 수집하는 도구로 정의하며, 컨테이너, 가상화시스템, 서버, 스토리지, 데이터베이스, 라우터, 네트워크 스위치 등에 대한 실시간 모니터링이 가능해야 한다고 서술합니다. <사진 설명: 가트너의 ITIM 정의를 도식화한 그림> 이러한 EMS는 초기에는 기업 전산실에 물리적인 형태로 존재하는 서버, 네트워크의 리소스관리를 중심으로 모니터링해 왔습니다. 서버의 CPU, Memory 등의 리소스 정보를 수집하거나, 네트워크 장비의 트래픽 정보를 모니터링하고 임계치를 기반으로 이벤트 감지하는 역할이 대부분이었으며, 이 정도 수준에서도 충분한 IT 인프라 관리가 이뤄질 수 있었습니다. 그러나 가상화(Virtualization)라는 개념이 생겨나고 다양한 IT 인프라들이 기업 전산실에서 클라우드(Cloud) 환경으로 전환됨에 따라, EMS의 모니터링 분야도 조금씩 바뀌어 가고 있습니다. 많은 기업들이 효율적인 리소스 사용과 비용 절감을 목표로 VMware와 같은 가상화 시스템을 도입해 운영하게 됐으며, 모니터링 부문도 이에 대응하기 위해 가상화 리소스에 대한 관리 영역으로 확장됐습니다. 가상화 환경을 이루는 하이퍼바이저(Hypervisor)와 가상머신(Virtual Machine)의 연관성을 추적하고, 각 가상머신들이 사용하고 있는 리소스를 실시간으로 분석해 효율적인 자원 배분, 즉 프로비저닝(Provisioning)을 위한 근거 데이터를 제공할 수 있도록 하고 있습니다. 더 나아가 VMware, Hyper-V 등의 다양한 가상화 플랫폼에서 가상머신을 생성하고 삭제하고, 실제로 가상머신에 CPU, Memory 등과 같은 리소스를 할당해 줄 수 있는 컨트롤 영역까지 제공하는 제품을 개발하는 벤더사들이 많아지고 있습니다. 이러한 가상화 기술을 기반으로 현대에는 IT 인프라들이 대부분 클라우드 환경으로 전환하고 있는 추세입니다. 클라우드 환경으로의 전환 클라우드(Cloud)란, 언제 어디서나 필요한 컴퓨팅 자원을 필요한 시간만큼 인터넷을 통해 활용할 수 있는 컴퓨팅 방식으로, 최근 기업들은 각자의 목적과 상황에 맞게 AWS, MS Azure와 같은 Public Cloud 및 OpenStack, Nutanix 등을 활용한 Private Cloud 등의 환경으로 기업의 전산설비들을 마이그레이션 하고 있습니다. 클라우드로의 전환과 기술의 발전에 따라, EMS의 IT 인프라 모니터링은 더 이상 *On-Premise 환경에서의 접근이 아닌, Cloud 환경, 특히 MSA(Micro Service Architecture)를 기반으로 하는 클라우드 네이티브(Cloud Native) 관점에서의 IT 운영 관리라는 새로운 접근이 필요하게 됐습니다. (*On-Premise : 기업이 서버를 클라우드 환경이 아닌 자체 설비로 보유하고 운영하는 형태) 클라우드 네이티브란, 클라우드 기반 구성요소를 클라우드 환경에 최적화된 방식으로 조립하기 위한 아키텍처로서, 마이크로서비스 기반의 개발환경, 그리고 컨테이너 중심의 애플리케이션 구동환경 위주의 클라우드를 의미합니다. 클라우드 네이티브는 IT비즈니스의 신속성을 위해 도커(Docker)와 같은 컨테이너를 기반으로 애플리케이션이 운영되므로, EMS는 컨테이너의 성능, 로그, 프로세스 및 파일시스템 등 세부적인 관찰과 이상징후를 판단할 수 있는 기능들이 요구되고 있습니다. 자사 제품인 Zenius SMS에서는 이러한 변화에 따라 Docker에 대한 모니터링 기능을 기본적으로 제공하고 있습니다. Docker 컨테이너가 생성되면 자동으로 관리대상으로 등록되며, Up/Down 뿐만 아니라, CPU, Memory, Network 및 Process의 정보를 실시간으로 모니터링하고 발생되는 로그들을 통합관리 할 수 있도록 합니다. <사진 설명: Zenius-SMS에서 제공하고 있는 Docker 컨테이너 모니터링 기능> 또, 복원력과 탄력성을 위해 쿠버네티스와 같은 오케스트레이션 도구를 활용해 컨테이너를 스핀업하고, 예상되는 성능에 맞게 효율적으로 리소스를 맵핑하고 있으며, 이러한 기술에 대응하기 위해 EMS는 쿠버네티스(Kubernetes), 도커스웜(Docker Swarm) 등의 오케스트레이터들의 동작여부를 직관적으로 관찰하는 제품들이 지속적으로 출시되고 있는 상황입니다. 이와 더불어 컨테이너, 오케스트레이터의 동적 연결관계를 실시간으로 모니터링하고, 파드(POD), 클러스터, 호스트 및 애플리케이션의 관계를 표현하는 역할의 중요성이 점차 커져가고 있습니다. 통합 모니터링(Monitoring) EMS 모니터링의 또 다른 변화로는 통합(Integration)의 역할이 더더욱 강해지고 있다는 것입니다. IT 서비스가 복잡해지고 다양해짐에 따라 IT 인프라의 관리 범위도 점차 증가하면서, 다양한 IT 인프라들을 융합하고 관리하기 위한 노력들이 관찰되고 있습니다. 데이터독(Datadog), 스플렁크(SPLUNK)와 같은 장비 관점의 모니터링 벤더들은 APM과 같은 애플리케이션 모니터링 시장으로, 앱다이나믹스(AppDynamics), 다이나트레이스(Dynatrace), 뉴렐릭(NewRelic)과 같은 애플리케이션 모니터링 시장의 강자들은 인프라 장비 관점의 모니터링 시장으로의 융합이 확인되고 있습니다. 자사 제품인 Zenius 역시 서버, 네트워크 중심의 관리에서 애플리케이션, 데이터베이스 등의 시장으로 관리 범위를 확장해 나가고 있는 추세입니다. IT 서비스의 영속성을 유지하기 위해서는 IT 서비스를 구성하는 다양한 요소들을 실시간으로 모니터링하고 연관관계를 추적해 문제 원인을 찾아내는 것이 중요하기 때문에 다양한 IT 요소들을 통합적으로 모니터링하는 것 뿐만 아니라, 상호 연관관계를 표현하고 추적할 수 있는 기능들이 지속적으로 요구되고 있습니다. 모니터링의 트렌드는 서버, 네트워크 등의 독립적인 개체에 대한 모니터링 아닌 IT 서비스를 중심으로 기반 요소들을 모두 통합적으로 모니터링하고, 각 상호간의 의존성과 영향도를 파악해 RCA(Root Cause Analysis) 분석을 가능하게 하고 이를 통해 IT 서비스의 연속성을 보장할 수 있는 통찰력을 확보하게끔 하는 방향으로 흘러가고 있습니다. Zenius는 서버, 네트워크, 애플리케이션, 데이터베이스 및 각종 로그들의 정보를 시각적으로 통합 모니터링할 수 있는 오버뷰(Overview) 도구와 IT 서비스 레벨에서 인프라들의 연관관계를 정의하고 다양한 조건(Rule)에 따라 서비스 이상유무와 원인분석이 가능한 서비스 맵(Service Map) 도구를 기본적으로 제공하고 있습니다. <사진 설명: Zenius 오버뷰 화면> <사진 설명: Zenius 서비스맵 화면> 앞서 언급했듯이, 클라우드 환경으로 전환함에 따라 통합적 관리 요구는 더욱 높아지고 있습니다. IT 인프라에 대한 통합 뿐만 아니라, AD(Active Directory), SAP 및 AWS, Azure, GCP 등의 다양한 서비스의 주요 지표까지 연계하고 하나의 시스템으로 통합 모니터링하기 위한 노력들이 관찰되고 있습니다. 데이터독(Datadog)의 경우, 500개 이상의 시스템, 애플리케이션 및 서비스들의 지표들을 손쉽게 통합 관리할 수 있다고 돼있습니다. <사진 설명: 데이터독 홈페이지 캡처> 이처럼 IT 서비스의 복잡성과 다양화에 따라 관리해야 될 서비스와 지표들은 점점 늘어나고 있으며, 기업의 현황에 맞게 컴포넌트 기반으로 손쉽게 지표들을 통합할 수 있는 기능과 도구들이 요구되고 있습니다. AI 기반의 예측&자동화 모니터링의 세번째 변화로는 ’AI 기반의 예측과 자동화’입니다. IT 인프라 및 서비스의 주요 지표를 모니터링하는 것도 중요하지만, 축적된 데이터를 기반으로 미래의 상황을 예측 및 이상탐지해 사전에 대비할 수 있는 체계를 갖추는 일은 모니터링 시장에서 중요한 이슈로 자리잡고 있습니다. 현재의 AIOps(AI for IT Operations)를 표방하는 모니터링 기술들은 서버, 네트워크, 애플리케이션, 데이터베이스 등의 주요 지표들을 실시간으로 수집하고, 저장된 데이터를 기반으로 AI 알고리즘 또는 통계기법을 통해 미래데이터를 예측하며 장애 발생가능성을 제공하고 있습니다. 이와 같은 기술을 통해 미래 성능 값을 예측해 IT 인프라의 증설 필요성 등을 판단하고, 장애 예측으로 크리티컬한 문제가 발생되기 전에 미리 조치를 취할 수 있도록 해 효율적인 의사결정을 할 수 있도록 합니다. Zenius도 4차 산업혁명 및 디지털 뉴딜시대가 도래함에 따라 미래예측 기능을 최신 버전에 탑재했으며, 이를 통해 IT운영자가 미래 상황에 유연하고 선제적으로 대응할 수 있도록 합니다. Zenius에서는 서버, 네트워크, 애플리케이션 등 다양한 IT 인프라의 미래 성능 값, 패턴 범위, 이상 범위 등을 예측해 IT 운영자에게 제시합니다. <사진 설명: 인공지능(AI) 기반 미래데이터 예측 화면> 다만, 인공지능 기술을 통해 장애 발생 가능성을 탐지하는 기능 외에, 어디에 문제가 발생됐는지 알려주는 기능은 모니터링 시장에 과제로 남아있고, 이를 제공하기 위한 여러 업체들의 노력이 보이고 있습니다. 이제는 EMS에서 보편적인 것이 됐지만, 모바일 기기를 통해 시∙공간적 제약 없는 모니터링이 이뤄지고 있습니다. 다양한 기종의 스마트폰, 태블릿PC 등을 이용해 운영콘솔(Console) 뿐만 아니라, 회의 등 시간을 잠시 비우더라도 IT 인프라에 대한 연속적인 모니터링이 모바일기기를 통해 가능해졌습니다. <사진 설명: 다양한 기기를 통한 모니터링>
2022.09.05
기술이야기
[Zenius Case#1] 내일까지 서버관리 현황 부탁할게요!
기술이야기
[Zenius Case#1] 내일까지 서버관리 현황 부탁할게요!
퇴근을 준비하는 어느 날, 부장님이 갑자기 요청합니다. “내일까지 서버관리 전반 현황 보고해야 되니 준비 부탁할게! 그럼 고생하고 낼 보자고” 어떤 내용들로 자료를 준비해야 하는 걸까요? 이번에는 Zenius SMS를 활용한 서버관리현황 파악에 대해 살펴보겠습니다. 서버관리 현황 파악의 포인트 1. 얼마나 많은 대상을 관리하고 있으며 종류는 어떤 것이 있는가? 2. 관리가 필요한 주요 성능지표 항목은 어떤 것이 있는가? 3. 주요 성능지표 관련해 현재 상태는 어떠한가? 4. 이슈가 존재하는 서버의 현황과 어떤 이슈를 가지고 있는가? 5. 어떻게 필요한 자료를 쉽고 빨리 확보해 보고할 것인가? 6. 향후 지속적으로 제공 가능한 범위인가?(내일까지 해야 하는데….) 7. 추가적인 요청사항에 대한 대응이 가능한가? 상기 사항들 모두 중요하지만, 그 중에서도 “지속적으로 제공 및 관리가 가능한가?”라는 부분에 집중해야 합니다. 아무리 훌륭한 자료라도 자료구성을 위해 과도한 공수가 발생하는 자료는 사실상 향후 지속적인 관리측면에서 실효성을 상실하게 돼 1회성 보고자료로 끝나게 되는게 현실입니다. 실제 업무에 필요한 자료는 지속적인 관리가 가능해야만 합니다. Zenius로 1분 만에 서버현황 보고자료 정리하기 Step 1. 기본 데이터 취득(10초) Step 2. 현황정보 정리(10초) 저희가 운영하는 대상은Total 12대입니다. OS 별로 Linux 6, Solaris 1, AIX 1, HPUX 1, Window 3 관리 운영 중에 있습니다. Step 3. 주요 성능지표의 상태정리(20초) 먼저 서버(OS) 측면의 주요 성능지표에 대해 알아보도록 하겠습니다. 정보시스템 성능관리 지침에서는 서버 성능관리의 목적을 아래와 같이 정의하고 있습니다. 서버 성능관리의 목적 “서버 성능관리 업무는 최적의 용량을 적시에 확보하기 위한 용량계획의 시점을 제공하고 성능 관련 문제를 사전에 예방함으로써, 사용자의 시스템 활용도 및 만족도를 향상시키기 위하여 수행된다.” 또한 정보시스템 성능관리 지침에서 서버의 주요 성능관리 구성요소는 아래와 같이 정의하고 있습니다. 구성요소 내용 CPU 총 CPU사용률, 시스템 모드 사용률, 사용자 모드 사용률, Run Queue, Pri Queue, 사용자수 등 메모리 총 메모리 사용률, 시스템 및 버퍼 캐쉬, Page In/Out, Swap 공간 사용률 등 디스크 Disk 사용률, Disk I/O Busy, Disk Queue 프로세스 CPU를 집중적으로 사용하는 프로세스, Zombie 프로세스 커널 커널 파라미터 설정을 통한 자원의 적절한 분배 파일시스템 파일시스템 IO Rate, 파일시스템 공간 사용률 네트워크 I/O In 패킷률, Out 패킷률, Collision률, Error률 해당 성능관리 구성요소 중 실제 시스템운영 시 체크가 필요한 몇 개 항목에 대해 간단히 정의하고 넘어가겠습니다. CPU 사용률(%) 서버의 성능을 의미하는 척도로 사용되는 항목으로 CPU의 사용률이 일정 이상을 넘어가면 서비스에 영향을 주기 시작합니다. 순간적으로 급격히 높아질 수 있기 때문에 일반적으로 임계값과 지속시간을 함께 지정해 감시합니다. *여기서 CPU란? Central Processing Unit의 약자로 명령을 해독하고 산술논리연산이나 데이터 처리를 실행하는 장치입니다. Memory 사용률(%) 메모리의 사용량이 너무 빨리 소모되거나 또는 지속적으로 사용량이 떨어지지 않는다면 조치가 필요한 부분입니다. *여기서 Memory란? 기억소자를 지칭하는 것으로 보다 빠른 처리를 위한 프로그램 또는 데이터를 저장하거나 계산된 결과를 임시 또는 반영구적으로 보관하는 기억장치입니다. Disk I/O Busy Rate(%) Disk의 경우 데이터 처리 속도가 메모리나 CPU에 비해 너무 느리기 때문에 Disk I/O Busy Rate의 경우 일정 임계치 이상 지속되는 경우 과다한 입출력이 발생시킴을 의미하며 시스템 성능에 영향을 줄 수 있습니다. *여기서 Disk I/O란? Disk의 입출력 양을 의미합니다. 이제 기본 취득 데이터 기준 주요 성능지표를 정리해 보겠습니다. CPU 사용률(%) 저희가 운영하는 서버 중 CPU 사용률은 다음과 같으며, CPU 사용률이 가장 높은 대상은 Cent7x64 장비입니다. 전일 기준 Peak 치가 59% 정도이며 현재 36%정도의 사용률을 보입니다. Memory 사용률(%) Memory 사용률 현황은 다음과 같으며, Memory 사용률이 가장 높은 대상은 Solaris11 장비 입니다. 전일 기준 Peak 치가 97% 정도이며 현재도 96%정도의 사용률을 보입니다. 해당 장비의 경우 상세분석 진행 예정입니다. Disk I/O Busy Rate(%) Disk I/O Busy Rate 기준으로 모니터링이 필요한 대상은 다음과 같으며 현재 전반 양호한 상태입니다. 가장 높은 대상은 Zenius6.1 장비입니다. 현재 37% 정도를 보이고 있으며 한시적 증가로 요소가 존재하는 상태입니다. 저장장치 사용률(%) 저장장치 사용률의 경우 시스템 전체의 사용률보다는 파티션 별 사용률 관점에서 정리가 필요합니다. 95% 이상 사용중인 파티션 영역이 존재하고, AIX72-ORA, Suse11-x64, Solaris11 장비의 경우 현재 조치 진행 중이며 용량증설 계획도 함께 고려하고 있습니다. Step 4. 이슈사항 정리(20초) 전체관리대상 중 긴급 1건, 위험 4건, 주위 4건의 이슈가 발생해 있는 상태이며 등급 별 상세내역은 다음과 같습니다. 이슈 발생 후 지속시간 2일 이상 지속중인 항목들은 단기 조치 불가 항목으로 조치방안에 대해 논의중인 항목입니다. 이상으로 Zenius를 활용해 1분만에 서버현황 보고자료를 구성해봤습니다. 그럼 이제 다음과 같이 보고를 진행했을 때 추가적으로 유입될 수 있는 요청사항을 Zenius SMS를 활용해 대응해보겠습니다. Zenius SMS를 활용해 추가 요청사항 대응하기 Q. CPU 사용률 높은 장비의 CPU 추이는 어떤가요? 전반 추이와 전일 대비 사용률을 확인해볼 필요가 있습니다. A. 해당장비의 CPU 사용률 추이는 다음과 같으며 전일대비 비교 했을 때 거의 유사한 범위내에 사용률 추이를 보여주고 있습니다. 3단계의 임계라인 기준으로 감시를 수행하고 있습니다. Q. 특정 파티션의 파일시스템 사용률이 높은 장비의 타 파티션의 사용률은 얼마나 되나요? 저장장치 사용률 추이도 함께 검토가 필요해보입니다. A. /nshome40 96% 이외 /home 파티션도 사용률이 90% 이상인 상태입니다. 사용률 추이를 확인했을 때 급격한 증가는 발생하지 않는 상태입니다.
2022.09.02
기술이야기
Java APM 기반 기술에 대한 간략한 설명
기술이야기
Java APM 기반 기술에 대한 간략한 설명
몇 년 전부터 미국 실리콘밸리에서 불어온 스타트업 광풍이 인플레이션과 경기 침체가 동시에 예상되는 최악의 전망 속에서 조금 사그러드는 모습입니다. 그러나 빠른 속도로 퍼지기 시작한 IT 관련 유행들은 아마 꽤 오랜 시간 우리들 근처에 남아 그 영향이 지속되지 않을까 예상해봅니다. 그 중 한 부분을 차지하는 것이 새로운 혹은 인기가 급상승한 Go, Python, R, Julia, Kotlin, Rust, Swift 등의 컴퓨터 언어들입니다. 이렇게 많은 언어들이 새로 등장해 번쩍번쩍하는 장점을 뽐내고 있는 와중에도, 아직 세상의 많은 부분, 특히 ‘엔터프라이즈 IT’라 불리는 영역에서 여전히 가장 많이 사용되는 것은 Java입니다. 절대적이지는 않지만 컴퓨터 언어의 인기 순위 차트인 TIOBE 인덱스에 따르면, 2022년 6월 현재도 Java의 인기는 Python, C의 뒤를 잇는 3위입니다. Java 역시 Java 9부터는 십 수년간 고수하던 백워드 컴패티빌리티 정책을 포기하고 여러가지 반짝거리는 장점을 받아들이면서 버전업을 계속해, 올해 9월에는 Java 19가 나올 예정입니다. 그러나 아직도 우리나라 ‘엔터프라이즈 IT’에서 가장 많이 쓰이는 버전, 그리고 작년까지는 세계에서 가장 많이 쓰이는 버전은 Java 8이었습니다. 이렇게 많은 Java 어플리케이션의 성능을 모니터링하고 관리할 수 있는 솔루션을 통상적으로 APM(Application Performance Management)이라고 합니다. 위에서 서술한 것처럼 다른 컴퓨터 언어들의 인기가 올라가고 사용되는 컴퓨터 언어가 다양해지면서 많은 APM 제품들이 Java외의 다른 컴퓨터 언어로 작성된 어플리케이션도 지원하는 경우가 늘어나고 있으나, 이 글에서는 APM을 Java 어플리케이션의 성능을 모니터링하고 관리할 수 있는 솔루션으로 한정하도록 하겠습니다. 어플리케이션의 성능을 보다 깊이 모니터링하는데 필수적인 것이 Trace[i]입니다. Trace는 어플리케이션이 실행되는 과정에 중요하다고 생각되는 부분에서 중요하다고 생각되는 어플리케이션의 상태를 기록으로 남긴 것입니다. 전통적인 어플리케이션에서는 실행 Thread를 따라가면서 순차적인 Trace가 남게 되고 유행에 맞는 MSA(Micro-Service Architecture) 어플리케이션에서는 서로 연관됐지만 직선적이지는 않은 형태의 Trace가 남게 됩니다. 이러한 Trace를 수집하고 추적하고 분석하는 것이 APM의 주요 기능 중 하나입니다. 그런데, 여기서 문제가 하나 생깁니다. Trace는 누가 남길 것인가 하는 문제입니다. 개발 리소스가 충분하고 여유가 있는 경우, 개발시 성능에 대한 부분에 신경을 써서 개발자들이 Trace를 남기며 이를 분석하고 최적화하는 것이 정례화, 프로세스화 돼있겠지만, 많은 경우 개발 리소스를 보다 중요한 목표 달성을 위해 투입하는 것도 모자랄 지경인 것이 현실입니다. 아무리 분석 툴인 APM이 좋아도, 분석할 거리가 되는 Trace가 없으면 무용지물이 돼 버립니다. 그래서 APM에는 미리 정해진 중요한 시점에 어플리케이션에서 아무 것도 하지 않더라도 자동으로 Trace를 남기도록 하는 기능이 필수적으로 필요합니다. Java 어플리케이션의 경우 이러한 기능은 Java Bytecode Instrumentation이라고 하는 기반 기술을 사용해 구현됩니다. 서론이 매우 길어졌지만, 이 글에서는 Java Bytecode Instrumentation에 대해 조금 상세히 살펴보도록 하겠습니다. Java Bytecode Instrumentation을 명확히 이해하려면, 먼저 Java가 아니라 C, C++, Rust등의 언어들로 작성된 프로그램이 어떤 과정을 거쳐서 실행되는가, 그리고 Java 프로그램은 어떤 과정을 거쳐서 실행되는가를 살펴보는 것이 도움이 됩니다. Java가 세상에 나오기 이전에는 ‘컴퓨터 학원’이나 고등학교 ‘기술’ 과목, 그리고 대학의 ‘컴퓨터 개론’ 등에 반드시 이런 내용이 포함돼 있었지만 요즘은 그렇지도 않은 것 같습니다. 컴퓨터에서 프로그램을 실행시키는 것은 CPU, 즉 Central Processing Unit입니다. 지금 이 글을 작성하고 있는 컴퓨터의 CPU는 Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz입니다. CPU는 메모리의 프로그램이 있는 영역을 읽어 들여, 미리 정해진 값에 따라 정해진 동작을 수행하게 됩니다. 이때 어떤 값이 어떤 동작을 수행하는지 규정해 놓은 것을 Machine Language라고 합니다. Machine Language는 100% 숫자의 나열이므로 이를 좀더 사람이 읽기 쉬운 형태로 1:1 매핑 시킨 것이 Assembly Language입니다. (그렇다고 읽기가 많이 쉬워지지는 않습니다.) 이 글에서는 이 두 단어를 구분없이 혼동해 사용합니다. C, C++, 그리고 나온 지 벌써 10년이나 된 Go, 요즘 인기가 계속 상승하고 있는 Rust 등의 언어로 작성된 프로그램은, 이들 언어로 작성된 소스 코드를 Machine Language로 미리 변환해서[ii] 실행 파일을 만들고 이를 실행하게 됩니다. 이 변환을 수행하는 것을 Compile한다라고 하고 이 변환을 수행하는 프로그램을 Compiler라고 부릅니다. 한편, 소스 코드를 완전히 Machine Language로 변환시킨 실행 파일을 실행하는 것이 아니라 Interpreter라 불리우는 프로그램이 소스 코드를 읽으면서 그 의미에 맞게 동작을 수행시키는 언어들도 있습니다. ‘스크립트 언어’라 불리는 bash, Perl, PHP, Ruby, Python 등이 이에 해당되면, 요즘은 잘 쓰이지 않지만 그 옛날 Bill Gates가 직접 Interpreter를 만들기도 했던 BASIC 등이 이에 해당합니다. 본론으로 돌아가보겠습니다. 그렇다면, Java 프로그램은 어떤 방식으로 실행이 되는가? 기본적으로는 Interpreter 방식이라고 생각해도 이 글의 주제인 Java Bytecode Instrumentation을 이해하는 데는 무리가 없습니다.[iii] 여기에 더해 Java의 실행 방식에는 몇 가지 큰 특징이 있습니다. 첫째로, Java는 소스 파일을 직접 읽어 들이면서 실행하는 것이 아니라 소스 파일을 미리 변환시킨 Java Class File을 읽어 들이면서 실행합니다. 하나의 Java Class File에는 하나의 Java Class 내용이 모두 포함됩니다. 즉, Class의 이름, public/private/internal 여부, 부모 클래스, implement하는 interface 등의 Class에 대한 정보, Class의 각 필드들의 정보, Class의 각 메서드[iv]들의 정보, Class에서 참조하는 심볼과 상수들, 그리고 이 글에서 가장 중요한 Java로 작성된 각 메서드의 내용을 Java Bytecode 혹은 JVM Bytecode라고 하는 중간 형태의 수열로 변환시킨 결과 등이 Java Class File에 들어가게 됩니다. 이 Java Bytecode는 실제 실행 환경인 CPU 및 Machine 아키텍처에 무관합니다. 똑같은 Java 소스 코드를 Windows에서 Compile해 Java Class File로 만들건, Linux에서 Compile해 Java Class File로 만들건 그 내용은 100% 동일하게 되고 이 점은 C, C++, Rust 등 Compiler 방식의 언어와 큰 차이점입니다. Java의 가장 큰 마케팅 캐치프레이즈 “Write Once, Run Anywhere”는 이를 표현한 것입니다. 둘째, Java Bytecode는 일반적인 CPU의 Machine Language와 많은 유사점을 지닙니다.[v] 어찌 보면 Java Bytecode는 실제 존재하지는 않지만 동작하는 가상의 CPU의 Machine Language라고 볼 수 있는 것입니다. 이러한 이유에서 Java Class File을 읽어 들여 실행시키는 프로그램을 JVM이라고 (Java Virtual Machine) 부릅니다. Java 소스 파일을 Java Class File로 변환시키는 프로그램을 Java Compiler라고 부르며, 가장 많이 쓰는 Java Compiler는 JDK(Java Development Kit)에 포함된 javac라고 하는 프로그램입니다.[vi] JVM은 JDK에 포함된 java라고 하는 프로그램을 가장 많이 씁니다. 한편 사용 빈도는 그렇게 높지 않지만, Java Class File을 사람이 알아볼 수 있는 형태로 변환해서 그 내용을 보고 싶은 경우도 있습니다. 이런 일을 하는 프로그램을 Java Bytecode Disassembler[vii]라고 부르며, JDK에는 Java Bytecode Disassembler인 javap가 포함돼 있습니다. 혹은, Eclipse나 Intellij IDEA 같은 IDE에서 Java Class File을 로드하면 사람이 알아볼 수 있는 형태로 변환해 보여줍니다. Java Bytecode의 실제 예를 한번 살펴보도록 하겠습니다. 설명을 간단히 하기 위해, 클래스나 메서드 선언 등은 다 제외하고, 오직 메서드의 내용에만 집중하면, System.out.println(“Hello, World.”); 라는 Java 프로그램은 다음과 같은 Java Bytecode로 변환됩니다. (전통적으로 16진수로 표시합니다.) b2 00 0b 12 09 b6 00 0f b1 이를 javap를 사용해, 혹은 JVM Reference[viii]를 보고 좀더 사람이 보기 쉬운 형태로 표현하면 다음과 같습니다. 0: getstatic #11 // Field java/lang/System.out:Ljava/io/PrintStream; 3: ldc #9 // String Hello World 5: invokevirtual #15 // Method java/io/PrintStream.println: (Ljava/lang/String;)V 8: return JVM Reference의 Chapter 7을 참고하면, Java Bytecode를 javap의 결과에 어떻게 대응되는지를 알 수 있습니다. javap의 결과를 조금 더 살펴봅시다. 먼저 콜론 앞의 숫자는 인스트럭션의 offset으로서 Bytecode 시퀀스의 0번째, 3번째, 5번째, 8번째를 의미합니다. 0번째의 getstatic은 그 다음 숫자에 해당하는 필드를 스택의 맨 위에 저장하도록 합니다. 3번째의 ldc는 “Hello, World”라는 상수값을 스택의 맨 위에 저장하도록 합니다. 5번째의 invokevirtual은 println 메서드를 호출하고, 8번째의 return은 메서드에서 리턴해 호출한 곳으로 실행을 넘깁니다. Java 프로그램은 (정확히는 Java 소스 코드로 작성된 프로그램을 Compile한 결과) 통상적으로 많은 수의 Java Class File로 이뤄집니다. JVM은 이러한 Java Class File을 한꺼번에 읽어 들이는 것이 아니라 실행을 하다가 필요한 순간이 되면 그 때 읽어 들입니다. JVM은 이 로딩 과정에 사용자가 개입할 여지를 남겨 뒀는데, 이것이 Java Bytecode Instrumentation입니다. 이에 대한 개요는 https://docs.oracle.com/javase/8/docs/api/java/lang/instrument/package-summary.html에 설명돼 있습니다. 요약해서 설명하면 다음과 같습니다. (1)사용자는 미리 정해진 규약대로 Java Agent라는 프로그램을 작성하고 이를 JVM 실행시에 옵션으로 명기합니다. (2)JVM은 Java Class File을 읽어 들여서 JVM이 처리하기 좋은 형태로 저장하기 전에, 그 파일 내용을 Java Agent의 ClassFileTransformer 클래스의 transform 메서드[ix]에 전달합니다. (3)JVM은 Java Class File의 원래 내용이 아니라 (2)의 메서드가 반환하는 결과를 저장하고 실행합니다. 이 과정을 Java Bytecode Instrumentation이라고 합니다. 사용자는 Java Bytecode Instrumentation을 구현해, 즉 Java Agent를 잘 작성헤 무엇이든 원하는 바를 달성할 수 있는 것입니다![x] 이러한 Java Bytecode Instrumentation은 APM, 그리고 Aspect-Oriented Programming의 기반 기술이 됩니다. 우리나라에서 Java로 프로그래밍을 한다고 하면 누구나 다 알고 있을 것 같은 Spring Core의 핵심 요소 중의 하나가 Aspect-Oriented Programming입니다. 예를 들어 Spring에서 @Transaction 이라고 annotation된 메서드가 있으면, Spring은 그 메서드의 맨 처음에 transaction을 시작하는 코드, 정상적으로 return하기 직전에는 transaction을 commit하는 코드, 그리고 익셉션에 의해 메서드를 빠져 나가기 직전에는 transaction을 rollback하는 코드를 삽입해 주게 되는데 이를 Java Bytecode Instrumentation을 이용해 구현하는 것입니다. 그럼, Java Agent에 거의 무조건적으로 필요한 기능은 무엇일까요? Java Agent는 Java Class File 내용을 그대로 전달받기 때문에 이를 해석할 수 있어야 무언가를 할 수 있습니다. 불행히도, java 스탠다드 라이브러리에는 Java Bytecode를 직접 다루는 기능은 없습니다.[xi] 그래서 de facto standard로 사용되는 것이 asm이라는 라이브러리입니다. 이 라이브러리는 수많은 java 라이브러리와 어플리케이션에 포함돼 있습니다. 그러나 asm이 훌륭한 라이브러리이긴 하지만, 이를 직접 사용하려면 각 상황에 맞게 코드를 삽입하는 프로그램을 작성해서 사용해야 하므로 자유도가 떨어집니다. 그래서 Zenius APM에서는 asm을 사용하되 삽입될 코드를 설정 파일에서 지정할 수 있는 suji(Simple Universal Java Instrumentor)[xii]라고 이름 붙인 라이브러리를 직접 만들어 사용하고 있습니다. suji를 사용하면 yaml 형식의 설정 파일에서, 어떤 클래스의 어떤 메서드의 어느 부분에 삽입할 것인지에 대한 조건과 삽입될 코드를 yaml의 list 형태로 지정하는 것만으로 (이는 Lisp와 비슷한 방식으로, 이렇게 하면 파싱 과정을 생략하면서 쉽게 코드를 넣을 수 있습니다.) Java Bytecode Instrumentation을 손쉽게 처리할 수 있습니다. 예를 들어, Zenius APM에서 JDBC getConnection을 처리하기 위해서 다음과 같은 부분이 설정 파일에 포함돼 있습니다. JDBC.DataSource.getConnection: IsEnabled: true ClassChecker: [ HasInterface, javax/sql/DataSource ] MethodName: getConnection IsStatic: false IsPublic: true IsDeclared: false ReturnType: Ljava/sql/Connection; Locals: [ Ljava/lang/Object;, Ljava/lang/Object; ] AtEntry: - [ INVOKE, dataSourceGetConnection, l1, [] ] AtExit: - [ INVOKE, poolGetConnectionEnd, l2, [ l1, ^r, true ] ] - [ LOAD, l2 ] - [ CAST, Ljava/sql/Connection; ] - [ STORE, ^r ] AtExceptionExit: - [ INVOKE, endByException, null, [ l1, ^e ] ] 간략하게 설명하면, Class가 만약 javax.sql.DataSource를 implement하고 메서드가 스태틱이 아니고 public이면서 java.sql.Connection을 리턴하는 getConnection이라는 이름을 가진 경우에 메서드 시작 시, 리턴 시, 그리고 익셉션에 의해 메서드를 나갈 때 위의 예제에 규정된 코드를 삽입하라는 의미입니다. 이상으로 Java Bytecode Instrumentation에 대한 간략한 설명을 마칩니다. 다음에는 실제로 APM이 중점적으로 추적하고 분석하는 것은 어떤 것들인가에 대해 설명하겠습니다. -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- [i] Sridharan, Distributed Systems Observability, O’Reilly, 2018의 Chapter 4. The Three Pillars of Observability 참조. 번역본은 없는 듯합니다. [ii] 이 외에 여러가지 과정을 거치지만 이 글의 목적과는 무관하므로 과감하게, 자세한 설명은 생략합니다. [iii] 실제로는 Java 프로그램이 100% 이렇게 interpret되어 실행되는 것은 아닙니다. 특정 메쏘드 혹은 메쏘드의 일부분이 자주 실행돼 interpret하는 것보다 미리 컴퓨터(=CPU)가 바로 실행할 수 있는 형태(=Machine Language)로 변환(=compile)해 놓는 것이 더 낫다고 JVM이 판단하는 경우, 미리 이런 변환 과정을 한번 거쳐 그 결과를 기억해 놓고, 그 기억된 결과를 컴퓨터(=CPU)가 바로 실행합니다. 이렇게 변환하는 과정을 Just-In-Time Compile 혹은 JIT라고 합니다. 또 이 때문에 JVM을 단순한 interpreter로 부를 수는 없는 것입니다. [iv] 국립국어원은 메서드가 맞는 표기라고 합니다. [v] 물론 많은 차이점도 지닙니다. (1) JVM은 register가 존재하지 않고 오로지 stack에만 의존한다. (2) JVM은 Class, Method의 개념을 포함하고 있지만 일반적인 범용 CPU에는 그런 상위 개념은 없습니다. [vi] 보통 IDE를 써서 개발을 하기 때문에, javac를 직접 사용하거나 Java Class File을 직접 다룰 일은 잘 없고, jar 파일이 이 글을 읽는 여러분에게 훨씬 더 익숙할 지도 모릅니다. Jar 파일은 그냥 zip으로 압축된 파일이니 그 압축을 한번 풀어 보길 바란다. 확장자가 class인 수많은 파일을 찾을 수 있을 것입니다. [vii] Assembly는 Assemble의 명사형이며, Assemble의 반대말은 Disassemble입니다. [viii] JVM에 대한 모든 것은 The Java Virtual Machine Specification에 나와 있습니다. 이 중 'Chapter 6. The Java Virtual Machine Instruction Set'를 참고하면 각각의 instruction에 대해 상세히 알 수 있습니다. [ix] https://docs.oracle.com/javase/8/docs/api/java/lang/instrument/ClassFileTransformer.html#transform-java.lang.ClassLoader-java.lang.String-java.lang.Class-java.security.ProtectionDomain-byte:A- [x] 쉽다고는 하지 않았습니다. 또 몇가지 제약 사항은 있습니다. [xi] 참고로 최근에는 asm을 대체할 수 있는 기능을 스탠다드 라이브러리에 넣을 계획이 진행되고 있습니다. https://openjdk.org/jeps/8280389 [xii] 명명이 아이돌 그룹 출신 모 여배우와 관계가 아주 없지는 않음을 조심스럽게 밝혀 둡니다.
2022.08.04
기술이야기
[ZNG 개발기] #1. ZNG와 Vue.js
기술이야기
[ZNG 개발기] #1. ZNG와 Vue.js
안녕하세요. 브레인즈컴퍼니 개발 3그룹에서 ZNG의 프론트엔드를 개발하고 있는 1년차 신입 개발자 김현수입니다. ZNG란 Zenius New Generation의 약자로, 브레인즈컴퍼니의 핵심 서비스인 제니우스의 차세대 버전을 말합니다. ZNG는 데이터베이스를 제외한 프론트엔드와 백엔드는 완전히 제로베이스에서 시작하는 장기 프로젝트이기에, 프로젝트를 진행하는 과정에서 새롭게 배운 것, 개발자로서 성장, 팀 개발 경험 등을 기록하고자 ZNG 개발기를 작성하게 됐습니다. ZNG 개발기는 달마다 개발과정에서 있었던 이슈들, 경험, 공부한 내용 등을 기술적인 내용과 함께 작성할 예정입니다. 다 함께! <사진 설명: 펭수, "렛츠고!"> 1. ZNG가 무엇인가요? ZNG는 기존 제니우스에서 발생하는 불편함을 해소하고자 탄생한 프로젝트입니다. 기존 제니우스에는 어떤 불편함이 있었고, 이를 해소하고자 ZNG는 어떤 컨셉을 목표로 개발할 것인가에 대해 알아보겠습니다. 같은 부서 선배 동료들을 쫄래쫄래 따라다니며 물어보고 배워가며 정리한 내용을 바탕으로 작성하는 글입니다. 혹시라도 틀린 부분이 있다면 알려주시면 감사하겠습니다! <사진 설명: 자환님은 아니라고 하셨다...> 제니우스는 B2B 솔루션 서비스 상품으로 사용자의 요구사항에 맞게 유연한 변경이 가능해야 합니다. 새로운 컴포넌트를 추가 한다거나, 여러 기능을 합치는 등 다양한 요구사항에 대응해야 합니다. 당연히도 현재 제니우스는 사용자의 요구사항에 맞춰 조금씩 커스텀해 서비스되고 있습니다. 그러나 효율적이지 못한 상황이 생기기도 합니다. 대체로 같은 내용의 코드를 반복해서 작성하는 상황이 그러합니다. 같은 형태를 가진 컴포넌트여도 출력하고자 하는 데이터의 종류가 다르다면 컴포넌트를 통째로 다시 만들어야 했습니다. 반복적인 작업은 개발자에게 피로감을 주게 되고 단순히 피로감을 넘어, 개발자에게 목표 의식을 저하시킬 우려가 있습니다. <사진 설명: 다양한 종류의 컴포넌트가 있다. 사용자마다 원하는 컴포넌트, 데이터가 다를 수 있다.> 이런 불편함을 해소하는 방법으로, ZNG는 코드의 재사용성을 높이기 위해 노력합니다. 각 기능끼리의 의존도는 낮추고, 독립성을 높여서 반복적인 작업을 최소화합니다. 같은 형태를 가진 컴포넌트에 대해서 데이터만 다르다면 데이터만 바꿔주면 됩니다. 사용자마다 다른 종류의 데이터를 출력하기를 원할 경우 더 빠르고 효율적인 대처가 가능합니다. 이러한 컨셉과 Vue.js의 Component를 관리하는 방법이 일치해 ZNG는 Vue.js로 개발하게 됐습니다. 2. ZNG와 Vue.js Vue.js에는 여러가지 특징이 있습니다. 그 중에서도 Vue Component에 대해서 자세히 알아보겠습니다. Vue Component Vue Component란 화면을 구성하는 하나의 블록입니다. Component는 하나의 전체 화면일수도 있고 전체 화면 중 일부분을 차지하는 또 하나의 작은 화면일수도 있습니다. 따라서 화면을 구현할 때 화면 전체를 한 번에 구현하지 않고, 부분적으로 구현해 관리하는 것이 가능합니다. Component를 활용하면 화면을 구조화해 직관적으로 개발할 수 있으며 코드의 재사용성이 올라갑니다. <사진 설명: 화면의 영역을 블록으로 쪼개 재활용 가능항 형태로 관리하는 것이 Vue Component> ZNG 기능 중 모니터링은 추출한 데이터를 그래프, 표 등을 통해 다양한 형태의 컴포넌트로 보여줍니다. 각각의 컴포넌트는 서로 다른 모양을 통해, 서로 다른 데이터를 보여줍니다. 반대로 말하면 하나의 컴포넌트에 대해서 모양, 데이터만 다르게 준다면 여러 종류의 컴포넌트를 만들 수 있습니다. 다음은 ZNG 코드 일부입니다. PCContainer는 컴포넌트를 감싸는 블록입니다. component 태그 안에 있는 ‘is’옵션에 ‘컴포넌트의 이름’을 넣어 그리고자 하는 컴포넌트를 선택할 수 있습니다. PCLineChart는 그래프를 그리는 컴포넌트입니다. highchartsOptions에 어떤 데이터를 넣느냐에 따라 원하는 그래프를 그릴 수 있습니다. <사진 설명: PCContainer> 하나의 PCContainer로 여러 모양의 컴포넌트를 그리고, 하나의 컴포넌트(PCLineChart)로 다양한 데이터를 표현할 수 있습니다. 컴포넌트를 만들기 위해 새로운 코드를 작성하지 않고, Vue Component를 통해 코드를 재사용함으로써 효율적이고 직관적인 코드를 개발할 수 있습니다. 부모와 자식 컴포넌트 관계 각 Vue Component는 데이터를 주고받을 때 부모-자식 관계를 갖는 것이 일반적입니다. <사진 설명: 부모-자식 컴포넌트> 부모는 자식에게 데이터를 전달할 수 있어야 하며, 자식은 부모에게 일어난 일을 알려야 합니다. 부모는 props를 통해 자식에게 데이터를 전달하며, 자식은 emit로 이벤트를 호출해 부모에게 데이터를 알립니다. 부모 컴포넌트와 자식 컴포넌트는 분명히 구분된 컴포넌트지만 props와 emit을 통해 의사소통이 가능합니다. ZNG는 최상단 레이아웃에서 서버로부터 데이터를 받아와 props를 통해 각 컴포넌트로 데이터를 보내줍니다. 하위 컴포넌트에서 발생한 이벤트를 통해 다시 상위 컴포넌트로 데이터를 전달해 데이터를 관리합니다. 다음은 ZNG 코드 중 일부입니다. 자식 컴포넌트는 props를 통해 부모 컴포넌트로부터 데이터를 받고, emit을 통해 부모 컴포넌트로 이벤트를 통해 알립니다. props와 emit을 통해 컴포넌트 간 의사소통을 수행하지만, 각 컴포넌트마다 코드를 분리하기 때문에 관리가 편하고 쉽게 재사용할 수 있습니다. 3. 마치며 ZNG의 개발 방향성과 이와 관련해 Vue.js의 Component 특징을 정리해봤습니다. Vue Component는 이전부터 알고 있던 개념이지만 직접 개발한 코드와 비교해보니 머릿속에 명확하게 정리되는 느낌이었습니다. 특히 코드를 다시 보면서 개념을 리마인드하는 과정이 좋았습니다. ZNG 개발기는 이제 시작입니다! 앞으로도 계속될 ZNG 개발기에 많은 관심 부탁드리며 ZNG 프로젝트를 성공적으로 수행할 때까지 응원해주세요! <사진 설명: 개발의 신이시여... 지켜봐 주세요!> [출처] https://kr.vuejs.org/ https://ko.wikipedia.org/wiki/Vue.js https://www.instagram.com/waterglasstoon/
2022.08.03
1
2
3
4
5