반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
AI 인공지능
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
APM Solution
애플리케이션 관리
URL 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
기술이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
잘파세대(Z세대 + 알파 세대)에 대한 모든 것
SMS를 통한 서버관리는 꼭 이렇게 해야만 한다?!
이화정
2024.02.22
페이스북 공유하기
트위터 공유하기
링크드인 공유하기
블로그 공유하기
네트워크 정보 수집 프로토콜의 모든 것 (SNMP, RMON, ICMP, Syslog)
Gartner에서 진행한 연구에 따르면 기업에서 서버의 다운타임이 발생할 경우, 시간당 약 748억 ~ 1,202억의 손실 비용이 발생한다고 합니다.
또한 서버 다운타임등 서버를 제대로 관리하지 못했을 경우에는, 금전적인 손실뿐 아니라 고객이탈이나 브랜드이미지 하락 등의 치명적인 손실도 입게 되죠.
따라서 올바른 서버 관리를 통해 문제를 미리 예방하고, 혹여나 문제가 발생할 경우에는 빠르게 대응할 수 있어야 합니다. 그렇다면
'올바른 서버 관리'란 정확히 무엇을 의미하는 걸까요?
ㅣ올바른 서버 관리를 위한 첫 걸음
ⓒoutsource2india
올바른 서버 관리를 위한 첫걸음은 바로 '통합 서버 관리' 도구의 도입입니다. 가장 많이 활용하는 도구가 바로 SMS(Server Management System)죠.
SMS는 복잡한 IT 인프라를 효과적으로 관리하고, 모니터링할 수 있는 해결책을 제공하여, 서버 사태를 쉽게 파악하고, 필요한 조치를 신속하게 처리할 수 있도록 도와줍니다.
SMS는 기업의 서비스 안정성과 비즈니스 연속성을 보장하는 데 필수적인 도구인 셈이죠. 최근에는 관리하는 서버의 규모와 상관없이 대부분 SMS을 사용하고 있습니다.
하지만 SMS를 도입하고 구축만 한다고 해서, 모든 과제를 해결할 수 있을까요?
ㅣSMS를 제대로 활용하는 방법
SMS를 '제대로' 활용하기 위해서는 단순한 모니터링을 넘어, 문제 발생 시 알림을 받고 이를 통해 신속하게 문제를 해결할 수 있는 적극적인 조치가 필요합니다.
적극적인 조치 중의 대표적인 예이자 서버 관리의 핵심은 바로 '감시 설정'입니다. 그렇다면 구체적으로 '감시 설정'을 통해 어떻게 서버를 관리해야 하는지, 이를 위한 SMS의 조건은 무엇인지 살펴보겠습니다.
최적화된 감시 설정 값을 간편하게 설정할 수 있어야 한다
SMS의 감시항목설정은 사용자가 기본적인 모니터링 환경을 빠르게 구축할 수 있도록 간편하게 설정할 수 있어야 합니다. 통합 서버 관리에 대한 경험이 부족한 사용자더라도, 제품을 쉽게 설정하고 사용할 수 있도록
최적화된 감시 설정 값을 제공
해야 하죠. 예를 들면 CPU 사용률이 몇% 였을 때 심각하고 위험한지를 각 항목별로 제공해야 합니다.
Zenius SMS의 경우 사용자의 OS에 따라 감시 설정 항목(CPU 사용률, MEM 사용률 등)의 심각도와 임계치 조건은 어떻게 해야 하는지 기본적인 디폴트 값을 제공합니다.
더불어서 제니우스만의 최적의 감시 설정 가이드라인을 제공하여, 복잡한 설정 과정을 거치지 않더라도 모니터링할 수 있도록 도와주죠. 물론 기업과 조직의 환경에 맞춰 감시 설정을 조정할 수 있습니다.
필수적인 감시 설정 기능을 갖추고 있어야 한다
또한 SMS의 감시 항목을 설정할 때는
필요한 주요 기능으로 구성
되어야 합니다. 사용자는 복잡한 설정 절차 없이 필요한 감시 항목을 설정해야 하고, 서버 관리에 소요되는 시간을 줄일 수 있어야 하기 때문이죠.
예를 들어 시스템의 중요한 지표(예: CPU 사용량, 메모리 사용량, 디스크 I/O 사용률)를 확인할 수 있는 감시 항목 설정이 있는지, 각 감시 항목에 대해 심각도 수준과 임계치를 설정할 수 있는지, 다양한 방식의 알림 방식 기능을 제공하는지 등을 직관적으로 확인할 수 있어야 합니다.
Zenius SMS의 경우 사용자에게 꼭 필요한 기능(감시 항목, 서버, 심각도, 임계치, 알림 설정, 복구 스크립트 등)만 집중할 수 있도록 구성되어 있습니다.
감시 항목에서는 사용 중인 OS를 설정하고, 원하는 감시 항목을 선택하여, 원하는 서버를 감시 설정 할 수도 있죠. 또한 심각도와 임계치 설정에서는 무해-주의-위험-긴급-치명 각 값에 맞게 임계치 값을 설정할 수 있습니다.
예를 들어 '긴급'이라는 항목에 80%라고 설정했는데 임계치 값이 80%를 넘어설 경우, 사용자에게 즉각적으로 알려줍니다. 또한 지속시간을 1분 발생 횟수를 1이라고 설정할 경우, 1분을 넘길 때 사용자에게 알림을 통보해 주죠.
알림 통보 서비스가 잘 갖춰져 있어야 한다
감시 항목 설정 중
알림 통보는 서버를 관리하는 데 있어 매우 중요한 기능
입니다. 서버에 문제점이 발생할 경우, 사용자에게 즉각적으로 알려줄 수 있는 장치이기 때문이죠. 또한 문제가 더 심각해지기 전에 신속하게 조치를 취할 수 있게 해주며, 시스템의 다운타임을 최소화하는 데 결정적인 역할을 합니다.
이 밖에도 알림 통보 기능에서는 사용자의 업무 환경과 선호도에 따라, 알림의 유형이나 수신자를 유연하게 선택할 수 있어야 합니다.
Zenius SMS를 예를 들어 살펴보면 감시 설정에 임계값을 초과하거나, 예상치 못한 이벤트가 발생했을 때 다양한 형태로 알림 서비스를 제공하고 있습니다. 이메일, 문자 Push App은 물론 외부 연동을 통해 슬랙이나, 카카오톡으로도 편리하게 알람을 받아볼 수 있죠.
이 밖에도 알림의 임계값과 조건, 적용 시간이나 요일, 알림을 받을 사용자도 별도로 지정할 수 있습니다.
자동화 복구스크립트 기능을 제공해야 한다
서버에 문제가 감지되었을 때는 알림 통보 기능뿐만 아니라,
사전에 정의된 스크립트를 자동으로 실행하여 문제를 신속하게 해결
할 수 있어야 합니다. 예를 들어 데이터베이스 서버의 응답 지연이 감지될 때 '캐시를 클리어하고 서비스를 재시작해 줘!'라는 스크립트 실행을 통해 즉각적으로 문제를 해결할 수 있어야 하죠.
이러한 자동화 복구스크립트 기능은 사용자가 알림을 받고 대응하기까지의 시간을 대폭 줄여줄 수 있고, 이에 따라 시스템 다운타임을 최소화할 수 있습니다. 또한 반복적이거나 단순한 문제 해결 과정을 자동화함으로써, 더 중요한 작업에 집중할 수 있겠죠.
위에 언급한 내용을 Zenius SMS를 통해 살펴보면, 장비에 장애가 발생할 경우 즉시 복구스크립트가 구동되어 문제를 자동적으로 해결할 수 있게 합니다.
예를 들어 A 서버에 임계치를 80%로 설정한 후, 복구스크립트를 통해 'C라는 방법으로 조치를 취해줘!'라고 미리 설정할 경우 자동적으로 문제를 해결할 수 있죠. 이러한 자동화 복구스크립트 기능은 수백 혹은 수천 대의 서버와 장비를 효율적으로 관리할 수 있어, 관리 부담을 줄이는 데 매우 효과적입니다.
또한 '정상 복구 시 통보' 옵션을 설정하면, 복구 스크립트가 완료됨에 따라 알림 통보를 사용자에게 재차 알려줍니다. 이 과정을 통해 사용자는 만족도와 제품에 대한 신뢰도를 높일 수 있겠죠.
감시 항목들을 한눈에 관리할 수 있어야 한다
이젠 앞에서 감시 설정하고 등록했던 감시 항목들을 모니터링할 수 있어야 하겠죠? 이때 중요한 점은
필수적인 감시 항목은 보여주되, UI는 단순화
해야 한다는 점입니다. 이는 주요 감시 항목의 상태를 신속하게 파악하고, 문제가 발생했을 때 즉각적으로 대응하기 위해서죠.
또한 감시 항목 상태를 색상 코드(예: 녹색은 정상, 노란색은 경고, 빨간색은 심각)와 아이콘으로 구분하여, 사용자가 감시 항목의 상황을 즉각적으로 인식할 수 있도록 해야 합니다.
Zenius SMS의 경우 주요 감시 항목들의 현황을 통합적으로 모니터링할 수 있습니다. 불필요한 항목들을 줄이고 핵심적인 항목들만 선별하여, 서버의 감시 항목을 신속하게 모니터링할 수 있죠.
감시 현황은 직관적인 UI가 중요한 만큼, 심각도 현황(정상-무해-주의-위험-긴급-치명)을 색상으로 구분하여 문제가 생겼을 때 신속하게 대응할 수 있도록 구성하였습니다. 또한 사용자의 환경에 맞춰 필수적인 감시 항목을 쉽게 선택하여 모니터링할 수 있습니다.
이 밖에도 많은 서버의 감시 항목을 관리하다 보면, 중요한 감시 항목을 추가하지 못한 상황이 발생할 수 있는데요. 최악의 경우에는 막대한 손실 비용 발생 등의 심각한 결과를 초래할 수 있겠죠.
이에 따라 감시 현황은 더더욱 직관적으로 모니터링할 수 있어야 합니다. 주요한 감시 항목을 실수로 설정하지 않더라도, 신속하게 파악하고 등록하여 대처할 수 있기 때문이죠. Zenius SMS는 감시 설정해 둔 항목 수가 예상과 다를 경우(예: 만약 관리하는 서버에 감시 항목이 2건이어야 하는데 → 1건으로 표기된 경우) 미등록 건 감시 항목을 조회하여 등록할 수 있습니다.
주요 감시 항목을 설정하고 동작여부에 '미등록' 항목으로 검색하면, 감시 설정하지 않은 항목을 조회할 수 있죠. 이처럼 Zenius SMS은 자칫 놓칠 수 있는 주요 감시 항목도 신속하게 찾아 등록할 수 있습니다.
。。。。。。。。。。。。
지금까지 살펴본 것처럼 Zenius와 같은 SMS를 통해서
서버를 한눈에 모니터링하고, 감시 설정 기능을 통해 체계적으로 관리하며, 문제 발생 시 다양한 알림과 자동화된 복구스크립트로 문제점을 신속히 해결
해야 합니다. Zenius SMS 대규모 서버자원을 관리하고 있는 한 고객사 관계자의 말씀으로 이 글을 마무리하려고 합니다.
"이 많은 서버의 감시 항목들을 휴일 없이 24시간 동안 지켜볼 수는 없잖아요. 그래서 서버를 통합 관리할 수 있는 Zenius SMS을 도입했죠. 이용하면서 좋았던 점은 감시 현황 페이지를 통해 한눈에 감시 항목을 관리할 수 있어 편리하다는 점이에요.
감시 설정을 걸어둔 항목들이 많아 종종 등록을 못한 경우가 발생해도, 직관적으로 확인하고 감시 항목을 추가할 수 있어요. 특히 복구 스크립트 기능을 애용하는 편인데요. 서버에 장애가 발생했을 때 복구 스크립트를 미리 걸어두면, 장비에 장애가 발생해도 신속하게 문제 해결을 할 수 있어 매우 만족스럽습니다!"
#SMS
#서버
#서버관리
#서버모니터링
#Zenius
#ZeniusSMS
#통합서버관리
이화정
프리세일즈팀
프리세일즈팀에서 마케팅, 내외부 홍보, 콘텐츠 제작을 담당하고 있어요.
필진 글 더보기
목록으로
추천 콘텐츠
이전 슬라이드 보기
Java APM 기반 기술에 대한 간략한 설명
Java APM 기반 기술에 대한 간략한 설명
몇 년 전부터 미국 실리콘밸리에서 불어온 스타트업 광풍이 인플레이션과 경기 침체가 동시에 예상되는 최악의 전망 속에서 조금 사그러드는 모습입니다. 그러나 빠른 속도로 퍼지기 시작한 IT 관련 유행들은 아마 꽤 오랜 시간 우리들 근처에 남아 그 영향이 지속되지 않을까 예상해봅니다. 그 중 한 부분을 차지하는 것이 새로운 혹은 인기가 급상승한 Go, Python, R, Julia, Kotlin, Rust, Swift 등의 컴퓨터 언어들입니다. 이렇게 많은 언어들이 새로 등장해 번쩍번쩍하는 장점을 뽐내고 있는 와중에도, 아직 세상의 많은 부분, 특히 ‘엔터프라이즈 IT’라 불리는 영역에서 여전히 가장 많이 사용되는 것은 Java입니다. 절대적이지는 않지만 컴퓨터 언어의 인기 순위 차트인 TIOBE 인덱스에 따르면, 2022년 6월 현재도 Java의 인기는 Python, C의 뒤를 잇는 3위입니다. Java 역시 Java 9부터는 십 수년간 고수하던 백워드 컴패티빌리티 정책을 포기하고 여러가지 반짝거리는 장점을 받아들이면서 버전업을 계속해, 올해 9월에는 Java 19가 나올 예정입니다. 그러나 아직도 우리나라 ‘엔터프라이즈 IT’에서 가장 많이 쓰이는 버전, 그리고 작년까지는 세계에서 가장 많이 쓰이는 버전은 Java 8이었습니다. 이렇게 많은 Java 어플리케이션의 성능을 모니터링하고 관리할 수 있는 솔루션을 통상적으로 APM(Application Performance Management)이라고 합니다. 위에서 서술한 것처럼 다른 컴퓨터 언어들의 인기가 올라가고 사용되는 컴퓨터 언어가 다양해지면서 많은 APM 제품들이 Java외의 다른 컴퓨터 언어로 작성된 어플리케이션도 지원하는 경우가 늘어나고 있으나, 이 글에서는 APM을 Java 어플리케이션의 성능을 모니터링하고 관리할 수 있는 솔루션으로 한정하도록 하겠습니다. 어플리케이션의 성능을 보다 깊이 모니터링하는데 필수적인 것이 Trace[i]입니다. Trace는 어플리케이션이 실행되는 과정에 중요하다고 생각되는 부분에서 중요하다고 생각되는 어플리케이션의 상태를 기록으로 남긴 것입니다. 전통적인 어플리케이션에서는 실행 Thread를 따라가면서 순차적인 Trace가 남게 되고 유행에 맞는 MSA(Micro-Service Architecture) 어플리케이션에서는 서로 연관됐지만 직선적이지는 않은 형태의 Trace가 남게 됩니다. 이러한 Trace를 수집하고 추적하고 분석하는 것이 APM의 주요 기능 중 하나입니다. 그런데, 여기서 문제가 하나 생깁니다. Trace는 누가 남길 것인가 하는 문제입니다. 개발 리소스가 충분하고 여유가 있는 경우, 개발시 성능에 대한 부분에 신경을 써서 개발자들이 Trace를 남기며 이를 분석하고 최적화하는 것이 정례화, 프로세스화 돼있겠지만, 많은 경우 개발 리소스를 보다 중요한 목표 달성을 위해 투입하는 것도 모자랄 지경인 것이 현실입니다. 아무리 분석 툴인 APM이 좋아도, 분석할 거리가 되는 Trace가 없으면 무용지물이 돼 버립니다. 그래서 APM에는 미리 정해진 중요한 시점에 어플리케이션에서 아무 것도 하지 않더라도 자동으로 Trace를 남기도록 하는 기능이 필수적으로 필요합니다. Java 어플리케이션의 경우 이러한 기능은 Java Bytecode Instrumentation이라고 하는 기반 기술을 사용해 구현됩니다. 서론이 매우 길어졌지만, 이 글에서는 Java Bytecode Instrumentation에 대해 조금 상세히 살펴보도록 하겠습니다. Java Bytecode Instrumentation을 명확히 이해하려면, 먼저 Java가 아니라 C, C++, Rust등의 언어들로 작성된 프로그램이 어떤 과정을 거쳐서 실행되는가, 그리고 Java 프로그램은 어떤 과정을 거쳐서 실행되는가를 살펴보는 것이 도움이 됩니다. Java가 세상에 나오기 이전에는 ‘컴퓨터 학원’이나 고등학교 ‘기술’ 과목, 그리고 대학의 ‘컴퓨터 개론’ 등에 반드시 이런 내용이 포함돼 있었지만 요즘은 그렇지도 않은 것 같습니다. 컴퓨터에서 프로그램을 실행시키는 것은 CPU, 즉 Central Processing Unit입니다. 지금 이 글을 작성하고 있는 컴퓨터의 CPU는 Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz입니다. CPU는 메모리의 프로그램이 있는 영역을 읽어 들여, 미리 정해진 값에 따라 정해진 동작을 수행하게 됩니다. 이때 어떤 값이 어떤 동작을 수행하는지 규정해 놓은 것을 Machine Language라고 합니다. Machine Language는 100% 숫자의 나열이므로 이를 좀더 사람이 읽기 쉬운 형태로 1:1 매핑 시킨 것이 Assembly Language입니다. (그렇다고 읽기가 많이 쉬워지지는 않습니다.) 이 글에서는 이 두 단어를 구분없이 혼동해 사용합니다. C, C++, 그리고 나온 지 벌써 10년이나 된 Go, 요즘 인기가 계속 상승하고 있는 Rust 등의 언어로 작성된 프로그램은, 이들 언어로 작성된 소스 코드를 Machine Language로 미리 변환해서[ii] 실행 파일을 만들고 이를 실행하게 됩니다. 이 변환을 수행하는 것을 Compile한다라고 하고 이 변환을 수행하는 프로그램을 Compiler라고 부릅니다. 한편, 소스 코드를 완전히 Machine Language로 변환시킨 실행 파일을 실행하는 것이 아니라 Interpreter라 불리우는 프로그램이 소스 코드를 읽으면서 그 의미에 맞게 동작을 수행시키는 언어들도 있습니다. ‘스크립트 언어’라 불리는 bash, Perl, PHP, Ruby, Python 등이 이에 해당되면, 요즘은 잘 쓰이지 않지만 그 옛날 Bill Gates가 직접 Interpreter를 만들기도 했던 BASIC 등이 이에 해당합니다. 본론으로 돌아가보겠습니다. 그렇다면, Java 프로그램은 어떤 방식으로 실행이 되는가? 기본적으로는 Interpreter 방식이라고 생각해도 이 글의 주제인 Java Bytecode Instrumentation을 이해하는 데는 무리가 없습니다.[iii] 여기에 더해 Java의 실행 방식에는 몇 가지 큰 특징이 있습니다. 첫째로, Java는 소스 파일을 직접 읽어 들이면서 실행하는 것이 아니라 소스 파일을 미리 변환시킨 Java Class File을 읽어 들이면서 실행합니다. 하나의 Java Class File에는 하나의 Java Class 내용이 모두 포함됩니다. 즉, Class의 이름, public/private/internal 여부, 부모 클래스, implement하는 interface 등의 Class에 대한 정보, Class의 각 필드들의 정보, Class의 각 메서드[iv]들의 정보, Class에서 참조하는 심볼과 상수들, 그리고 이 글에서 가장 중요한 Java로 작성된 각 메서드의 내용을 Java Bytecode 혹은 JVM Bytecode라고 하는 중간 형태의 수열로 변환시킨 결과 등이 Java Class File에 들어가게 됩니다. 이 Java Bytecode는 실제 실행 환경인 CPU 및 Machine 아키텍처에 무관합니다. 똑같은 Java 소스 코드를 Windows에서 Compile해 Java Class File로 만들건, Linux에서 Compile해 Java Class File로 만들건 그 내용은 100% 동일하게 되고 이 점은 C, C++, Rust 등 Compiler 방식의 언어와 큰 차이점입니다. Java의 가장 큰 마케팅 캐치프레이즈 “Write Once, Run Anywhere”는 이를 표현한 것입니다. 둘째, Java Bytecode는 일반적인 CPU의 Machine Language와 많은 유사점을 지닙니다.[v] 어찌 보면 Java Bytecode는 실제 존재하지는 않지만 동작하는 가상의 CPU의 Machine Language라고 볼 수 있는 것입니다. 이러한 이유에서 Java Class File을 읽어 들여 실행시키는 프로그램을 JVM이라고 (Java Virtual Machine) 부릅니다. Java 소스 파일을 Java Class File로 변환시키는 프로그램을 Java Compiler라고 부르며, 가장 많이 쓰는 Java Compiler는 JDK(Java Development Kit)에 포함된 javac라고 하는 프로그램입니다.[vi] JVM은 JDK에 포함된 java라고 하는 프로그램을 가장 많이 씁니다. 한편 사용 빈도는 그렇게 높지 않지만, Java Class File을 사람이 알아볼 수 있는 형태로 변환해서 그 내용을 보고 싶은 경우도 있습니다. 이런 일을 하는 프로그램을 Java Bytecode Disassembler[vii]라고 부르며, JDK에는 Java Bytecode Disassembler인 javap가 포함돼 있습니다. 혹은, Eclipse나 Intellij IDEA 같은 IDE에서 Java Class File을 로드하면 사람이 알아볼 수 있는 형태로 변환해 보여줍니다. Java Bytecode의 실제 예를 한번 살펴보도록 하겠습니다. 설명을 간단히 하기 위해, 클래스나 메서드 선언 등은 다 제외하고, 오직 메서드의 내용에만 집중하면, System.out.println(“Hello, World.”); 라는 Java 프로그램은 다음과 같은 Java Bytecode로 변환됩니다. (전통적으로 16진수로 표시합니다.) b2 00 0b 12 09 b6 00 0f b1 이를 javap를 사용해, 혹은 JVM Reference[viii]를 보고 좀더 사람이 보기 쉬운 형태로 표현하면 다음과 같습니다. 0: getstatic #11 // Field java/lang/System.out:Ljava/io/PrintStream; 3: ldc #9 // String Hello World 5: invokevirtual #15 // Method java/io/PrintStream.println: (Ljava/lang/String;)V 8: return JVM Reference의 Chapter 7을 참고하면, Java Bytecode를 javap의 결과에 어떻게 대응되는지를 알 수 있습니다. javap의 결과를 조금 더 살펴봅시다. 먼저 콜론 앞의 숫자는 인스트럭션의 offset으로서 Bytecode 시퀀스의 0번째, 3번째, 5번째, 8번째를 의미합니다. 0번째의 getstatic은 그 다음 숫자에 해당하는 필드를 스택의 맨 위에 저장하도록 합니다. 3번째의 ldc는 “Hello, World”라는 상수값을 스택의 맨 위에 저장하도록 합니다. 5번째의 invokevirtual은 println 메서드를 호출하고, 8번째의 return은 메서드에서 리턴해 호출한 곳으로 실행을 넘깁니다. Java 프로그램은 (정확히는 Java 소스 코드로 작성된 프로그램을 Compile한 결과) 통상적으로 많은 수의 Java Class File로 이뤄집니다. JVM은 이러한 Java Class File을 한꺼번에 읽어 들이는 것이 아니라 실행을 하다가 필요한 순간이 되면 그 때 읽어 들입니다. JVM은 이 로딩 과정에 사용자가 개입할 여지를 남겨 뒀는데, 이것이 Java Bytecode Instrumentation입니다. 이에 대한 개요는 https://docs.oracle.com/javase/8/docs/api/java/lang/instrument/package-summary.html에 설명돼 있습니다. 요약해서 설명하면 다음과 같습니다. (1)사용자는 미리 정해진 규약대로 Java Agent라는 프로그램을 작성하고 이를 JVM 실행시에 옵션으로 명기합니다. (2)JVM은 Java Class File을 읽어 들여서 JVM이 처리하기 좋은 형태로 저장하기 전에, 그 파일 내용을 Java Agent의 ClassFileTransformer 클래스의 transform 메서드[ix]에 전달합니다. (3)JVM은 Java Class File의 원래 내용이 아니라 (2)의 메서드가 반환하는 결과를 저장하고 실행합니다. 이 과정을 Java Bytecode Instrumentation이라고 합니다. 사용자는 Java Bytecode Instrumentation을 구현해, 즉 Java Agent를 잘 작성헤 무엇이든 원하는 바를 달성할 수 있는 것입니다![x] 이러한 Java Bytecode Instrumentation은 APM, 그리고 Aspect-Oriented Programming의 기반 기술이 됩니다. 우리나라에서 Java로 프로그래밍을 한다고 하면 누구나 다 알고 있을 것 같은 Spring Core의 핵심 요소 중의 하나가 Aspect-Oriented Programming입니다. 예를 들어 Spring에서 @Transaction 이라고 annotation된 메서드가 있으면, Spring은 그 메서드의 맨 처음에 transaction을 시작하는 코드, 정상적으로 return하기 직전에는 transaction을 commit하는 코드, 그리고 익셉션에 의해 메서드를 빠져 나가기 직전에는 transaction을 rollback하는 코드를 삽입해 주게 되는데 이를 Java Bytecode Instrumentation을 이용해 구현하는 것입니다. 그럼, Java Agent에 거의 무조건적으로 필요한 기능은 무엇일까요? Java Agent는 Java Class File 내용을 그대로 전달받기 때문에 이를 해석할 수 있어야 무언가를 할 수 있습니다. 불행히도, java 스탠다드 라이브러리에는 Java Bytecode를 직접 다루는 기능은 없습니다.[xi] 그래서 de facto standard로 사용되는 것이 asm이라는 라이브러리입니다. 이 라이브러리는 수많은 java 라이브러리와 어플리케이션에 포함돼 있습니다. 그러나 asm이 훌륭한 라이브러리이긴 하지만, 이를 직접 사용하려면 각 상황에 맞게 코드를 삽입하는 프로그램을 작성해서 사용해야 하므로 자유도가 떨어집니다. 그래서 Zenius APM에서는 asm을 사용하되 삽입될 코드를 설정 파일에서 지정할 수 있는 suji(Simple Universal Java Instrumentor)[xii]라고 이름 붙인 라이브러리를 직접 만들어 사용하고 있습니다. suji를 사용하면 yaml 형식의 설정 파일에서, 어떤 클래스의 어떤 메서드의 어느 부분에 삽입할 것인지에 대한 조건과 삽입될 코드를 yaml의 list 형태로 지정하는 것만으로 (이는 Lisp와 비슷한 방식으로, 이렇게 하면 파싱 과정을 생략하면서 쉽게 코드를 넣을 수 있습니다.) Java Bytecode Instrumentation을 손쉽게 처리할 수 있습니다. 예를 들어, Zenius APM에서 JDBC getConnection을 처리하기 위해서 다음과 같은 부분이 설정 파일에 포함돼 있습니다. JDBC.DataSource.getConnection: IsEnabled: true ClassChecker: [ HasInterface, javax/sql/DataSource ] MethodName: getConnection IsStatic: false IsPublic: true IsDeclared: false ReturnType: Ljava/sql/Connection; Locals: [ Ljava/lang/Object;, Ljava/lang/Object; ] AtEntry: - [ INVOKE, dataSourceGetConnection, l1, [] ] AtExit: - [ INVOKE, poolGetConnectionEnd, l2, [ l1, ^r, true ] ] - [ LOAD, l2 ] - [ CAST, Ljava/sql/Connection; ] - [ STORE, ^r ] AtExceptionExit: - [ INVOKE, endByException, null, [ l1, ^e ] ] 간략하게 설명하면, Class가 만약 javax.sql.DataSource를 implement하고 메서드가 스태틱이 아니고 public이면서 java.sql.Connection을 리턴하는 getConnection이라는 이름을 가진 경우에 메서드 시작 시, 리턴 시, 그리고 익셉션에 의해 메서드를 나갈 때 위의 예제에 규정된 코드를 삽입하라는 의미입니다. 이상으로 Java Bytecode Instrumentation에 대한 간략한 설명을 마칩니다. 다음에는 실제로 APM이 중점적으로 추적하고 분석하는 것은 어떤 것들인가에 대해 설명하겠습니다. -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- [i] Sridharan, Distributed Systems Observability, O’Reilly, 2018의 Chapter 4. The Three Pillars of Observability 참조. 번역본은 없는 듯합니다. [ii] 이 외에 여러가지 과정을 거치지만 이 글의 목적과는 무관하므로 과감하게, 자세한 설명은 생략합니다. [iii] 실제로는 Java 프로그램이 100% 이렇게 interpret되어 실행되는 것은 아닙니다. 특정 메쏘드 혹은 메쏘드의 일부분이 자주 실행돼 interpret하는 것보다 미리 컴퓨터(=CPU)가 바로 실행할 수 있는 형태(=Machine Language)로 변환(=compile)해 놓는 것이 더 낫다고 JVM이 판단하는 경우, 미리 이런 변환 과정을 한번 거쳐 그 결과를 기억해 놓고, 그 기억된 결과를 컴퓨터(=CPU)가 바로 실행합니다. 이렇게 변환하는 과정을 Just-In-Time Compile 혹은 JIT라고 합니다. 또 이 때문에 JVM을 단순한 interpreter로 부를 수는 없는 것입니다. [iv] 국립국어원은 메서드가 맞는 표기라고 합니다. [v] 물론 많은 차이점도 지닙니다. (1) JVM은 register가 존재하지 않고 오로지 stack에만 의존한다. (2) JVM은 Class, Method의 개념을 포함하고 있지만 일반적인 범용 CPU에는 그런 상위 개념은 없습니다. [vi] 보통 IDE를 써서 개발을 하기 때문에, javac를 직접 사용하거나 Java Class File을 직접 다룰 일은 잘 없고, jar 파일이 이 글을 읽는 여러분에게 훨씬 더 익숙할 지도 모릅니다. Jar 파일은 그냥 zip으로 압축된 파일이니 그 압축을 한번 풀어 보길 바란다. 확장자가 class인 수많은 파일을 찾을 수 있을 것입니다. [vii] Assembly는 Assemble의 명사형이며, Assemble의 반대말은 Disassemble입니다. [viii] JVM에 대한 모든 것은 The Java Virtual Machine Specification에 나와 있습니다. 이 중 'Chapter 6. The Java Virtual Machine Instruction Set'를 참고하면 각각의 instruction에 대해 상세히 알 수 있습니다. [ix] https://docs.oracle.com/javase/8/docs/api/java/lang/instrument/ClassFileTransformer.html#transform-java.lang.ClassLoader-java.lang.String-java.lang.Class-java.security.ProtectionDomain-byte:A- [x] 쉽다고는 하지 않았습니다. 또 몇가지 제약 사항은 있습니다. [xi] 참고로 최근에는 asm을 대체할 수 있는 기능을 스탠다드 라이브러리에 넣을 계획이 진행되고 있습니다. https://openjdk.org/jeps/8280389 [xii] 명명이 아이돌 그룹 출신 모 여배우와 관계가 아주 없지는 않음을 조심스럽게 밝혀 둡니다.
2022.08.04
벽을 넘어서고 싶은 신입 개발자의 브레인즈 생활기
벽을 넘어서고 싶은 신입 개발자의 브레인즈 생활기
지원 이유와 여정 대학교 졸업 후, 부족한 웹개발 역량을 쌓기 위해 5달간의 풀스택 부트캠프 교육을 수료하고 1달간의 기업 협업 인턴을 마쳤습니다. 이후, 제 역량을 마음껏 펼쳐내며 지속적으로 성장할 수 있는 회사에서 일하고 싶다는 생각이 들었습니다. 그러다 풀스택 기술뿐만 아니라, 빅데이터 및 AI 기술을 활용해 차세대 기술을 개발하는 브레인즈컴퍼니의 채용공고를 발견했습니다. 이 회사에서라면 많은 것을 배워 역량을 키우고 성장하며 일할 수 있겠다는 생각에 지원했고, 면접 끝에 첫 직장에 취업하게 됐습니다. 웹개발도 재밌지만 개발자로서 지속적으로 새로운 기술들을 습득하며 성장하는 것에서 성취감과 보람을 느끼는 것이 컸고, 그럴 수 있는 부서에서 첫 회사 생활을 시작할 수 있다는 생각에 기뻤습니다. 채용 과정 면접에서 기억에 남는 질문은 "우리 부서는 프론트엔드 보다 백엔드를 더 추구하는 편이라 함께 일을 하게 된다면, 프론트엔드와 백엔드 모두를 아울러 사용할 것인데 할 수 있습니까?"였습니다. 풀스택 개발자로서 일을 하게 된다는 질문이었고, 저는 이 부분에 대해 긍정적이었기 때문에 자신 있게 할 수 있다고 대답했습니다. 백엔드 개발자보다 많은 영역에서 발전하며 성장할 수 있다는 생각에 더욱 기대되고 설렜던 기억이 있습니다. 그렇게 저의 첫 직장 생활이 시작됐습니다. 입사 후, 지난 3달간의 일대기 채용이 된 후, 출근까지 2주간의 자유 시간이 주어졌습니다. 졸업 후 부트캠프 교육을 이수하면서 줄곧 달려왔고, 즐겁게 공부했지만 지쳐있는 심신을 달래기 위해 여행도 다녀오고 친구들과 가족들과 시간을 보내면서 출근 준비를 했습니다. 그렇게 2주 후 첫 출근을 하는 날이 됐고, 본격적으로 사원으로 근무하는 날이 다가왔습니다! 브레인즈컴퍼니의 개발 그룹은 1~5그룹으로 나눠져 있으며, 저는 개발4그룹에 소속됐습니다. 개발4그룹은 프론트엔드와 백엔드 개발뿐만 아니라, 빅데이터 및 AI 기술을 동원한 신기술 개발을 담당하고 있어, 배울 점도 많고 나아가야할 길도 멀리 펼쳐져 있다고 느꼈습니다. 1st Month_적응기 입사 첫 달은, 개발4그룹에서 집중적으로 개발 진행 중인 로그매니저와 Zenius AI의 제품 매뉴얼과 웹페이지에서 실제로 사용되고 있는 각각의 기능들을 학습하며 제품을 파악하고 익숙해지는 기간을 가졌습니다. 그렇게 한 달 간은 개발에 투입되기보다는 제품 및 사용된 기능들에 대한 학습과 공부를 하는 기간이었습니다. 단순히 제품의 매뉴얼만을 보며 학습을 했다면 집중도가 떨어졌을 수 있지만, 제품에서 사용하고 있는 다양한 기술들, Elasticsearch, Kibana, Kafka, Cluster 등 스택들에 대해 공부하면서 흥미와 재미를 느끼며 학습을 이어갈 수 있었습니다. 잘 몰랐던 신 기술들을 접하면서, 앞으로도 배우게 될 다양한 기술들에 대해 기대감이 부풀었던 한달이었습니다. 이외에도 학습을 진행하면서 원래 사용하던 스택인 JavaScript와 Linux의 Base부터 차근차근 다시 복습하며 결점을 보완하고, 제 자신을 Refactoring하기도 했던 한 달이었습니다. 2nd Month_개인정보 마스킹 기능 개발 입사 두 달째 부터는, 로그매니저와 Zenius AI의 기능들과 매뉴얼에 대해 전반적인 이해를 갖게 됐고, 각 사이트 기능들의 동작 원리 등을 대략적으로 파악할 수 있었습니다. 두 달이 된 이 시점부터 프론트엔드와 백엔드 모두를 사용하는 프로젝트가 주어졌습니다. 주어진 프로젝트는 ‘개인정보 마스킹 기능 개발’ 이었습니다. 로그매니저 내에서 수집되는 대용량의 로그들 안에 개인 정보가 포함될 경우가 있는데, 개인정보가 그대로 노출되는 것을 방지하기 위해 개인정보에 해당하는 정보는 마스킹처리를 자동적으로 진행하는 기능 개발을 진행하게 됐습니다. 예를 들어, 로그에 ‘961219-1234567’, ‘서울시 성동구 성수이로’, ‘010-1234-5678’ 등과 같은 주민등록번호, 주소, 연락처 뿐만 아니라 다양한 개인정보들을 지정한 특수문자(Default로는 *을 사용) 로 마스킹 처리를 해주는 기능을 개발하는 과정이 중점이 되는 프로젝트였습니다. 풀스택 공부를 하면서, 백엔드는 Node.js와 MySQL, PrismaOrm 등을 사용해 기능 개발을 진행했지만, 이번 프로젝트는 Elasticsearch, Kafka.js, Cluster.js 및 커스텀마이징된 다양한 메소드와 함수들을 통해 진행했기 때문에 배울 점이 매우 많았고, 성장하는 것을 느낄 수 있었습니다. 이외에도 프론트엔드에서 Ace.js를 통한 텍스트 편집기를 개발하고, 개인정보유형에 해당하는 정보가 입력되면 Syntax Highlighting 기능을 통해 해당 부분에 형광펜 효과를 적용시켜주는 기능의 개발을 진행했습니다. 개인정보 유형에 해당하는 정보에 대응되는 정규표현식, 그리고 백엔드에서 마스킹 처리될 특수문자 타입의 데이터 등은 Elasticsearch의 Index를 통해서 데이터의 저장과 반환작업 처리를 진행해줬으며, 이 데이터들을 기반으로 프론트엔드와 백엔드에서 모두 정상적인 마스킹 기능과 Syntax Highlighting 기능을 개발할 수 있었습니다. 새로운 기술을 활용해 프로젝트를 진행하면서 어려운 점도 많았고 시행착오도 겪었지만, 그만큼얻어가고 배워가는 것이 많았던 첫 업무였습니다. Elasticsearch, Kibana, Cluster, Kafka 등 새로운 기술 스택에 대해 배우고 적용할 수 있었다는 점이 매우 흥미로웠고 뿌듯한 경험이었습니다. <사진 설명: 개인정보 유형과 마스킹 여부, 정규표현식 관리와 마스킹 기능 ON/OFF가 가능한 페이지> <사진 설명: 선택한 개인정보 정규표현식에 해당되는 데이터 Syntax Hilighting 기능 구현> 3rd Month_데몬프로세스 그룹화 작업 및 테스트케이스 입사 세 달째 부터는, 어느 정도 회사 생활에 적응이 된 상태가 됐습니다. 아침 일찍 일어나는 것에도 적응이 됐고, 초반에는 어색했던 업무회의와 주간업무보고서 작성도 이제는 자연스럽게 하고 있는 모습을 발견할 수 있었습니다. 첫번째 프로젝트를 마친 후, 두번째로는 로그매니저의 데몬프로세스 기능을 그룹별로 정렬하는 업무를 맡게 됐습니다. 데몬프로세스가 각각의 그룹 속성을 지니고 있지만, 이를 그룹별로 나눠서 보여준다면 좀 더 가독성과 가시성이 높아질 것이기 때문에, Elasticsearch에서 반환 받는 데이터를 그룹의 조건에 따라 분류해주는 작업이 주가 됐습니다. 두번째 개발 후에는 로그매니저의 각 기능들에 대한 테스트 케이스 및 오류 사항 확인의 과정을 거쳤고, 제가 개발한 ‘개인정보 관리’ 기능에 대한 테스트 케이스 작성도 진행했습니다. 개발자가 개발을 잘하는 것도 중요하지만, 이렇게 자신이 개발한 기능에 대해 테스트케이스를 작성하면서 유저가 해당 테스트케이스를 확인하고, 개발한 기능을 자연스레 사용할 수 있게 해야 하는 것은 개발만큼이나 중요하다고 생각하기 때문에 기분 좋게 테스트케이스 작성을 진행할 수 있었습니다. 또, 로그매니저 제품 각 기술들의 테스트케이스들을 확인하며 각각의 기능들을 모두 테스트해볼 수 있는 기회가 됐으며, 개발하고 서비스되고 있는 기술들에 대해 좀더 명확하게 인지하고 확인할 수 있어 제품 이해에 큰 도움이 됐습니다. 이를 기회로 개발만이 중요한 것이 아닌 테스트케이스의 중요성을 절실히 깨닫고, 제가 개발하는 기술들에 대한 테스트케이스 작성이 필수불가결하다는 것을 느끼게 됐습니다. 느낀 점 브레인즈컴퍼니 개발4그룹에 입사 후, 3달간 근무하며 느낀 점은 제가 만족하며 회사를 다니고 있다는 점입니다. 그룹의 모든 구성원분들이 잘 적응할 수 있도록 도와주고 챙겨주셨고, 문제가 될 수도 있는 실수가 발생해도 모든 그룹원들이 다 잘 다독여 주셨습니다. 또, 좋은 피드백을 줘서 지속적으로 배워가고 성장할 수 있는 회사의 성장할 수 있는 부서라고 생각합니다. 그룹의 상래님, 신후님, 천웅님, 태민님 모두 제게 좋은 피드백과 도움을 주시고, 개선돼야할 점과 공부해야 할 부분, 그리고 개발을 하면서 고쳐야 할 습관들을 알려주셔서 점차 앞으로 나아갈 수 있다고 생각합니다. 일을 하면서 빼놓을 수 없는 게 워라밸일 것이라고 생각합니다. 첫 회사에서 일과 삶의 밸런스가 매우 적절하다고 생각하고 만족하며 근무를 하고 있습니다. 퇴근을 한 뒤에도 운동을 할 수 있고, 식단 관리도 병행하며 몸을 기르고 있습니다. 만약, 워라밸이 좋지 않았더라면 이렇게 삶을 유지할 수 없을 거라는 생각이 듭니다. 글을 마치며 면접에서 제가 했던 말이 있습니다. 저는 앞에 벽이 있다면 돌아가 다른 길을 찾으려 하기보다는 그 벽을 넘을 수 있는 방법을 생각합니다. 앞으로 나아갈 수 있고 성장할 수 있는 삶을 추구하고 있습니다. 비록 그 벽을 넘지 못하더라도, 다음에 그 벽보다 낮은 벽은 넘을 수 있을 것입니다. 시도조차 하지 않으면 당연히 발전도 없다고 생각합니다. 매번 도전하고 또 도전하며 발전하는 개발4그룹의 일원이 돼, 신기술 개발에도 큰 보탬이 되는 개발자로 성장하고 싶습니다. 그리고 브레인즈컴퍼니 개발4그룹에서 반드시 실현 가능하다고 생각합니다. 다양한 기술들을 배우고 학습해 제 것으로 만들고, 그룹과 회사에 보탬이 되는 개발자로 성장하겠습니다! [출처] https://twitter.com/gom_translate https://me2.kr/wvu3p http://jjaltoon.gallery/?p=11311 https://me2.kr/eq144
2022.08.25
IT 인프라 모니터링 트렌드
IT 인프라 모니터링 트렌드
EMS란? EMS는 Enterprise Management System의 약자로, 여러 기업과 기관의 IT서비스를 이루는 다양한 IT Infrastructure를 통합적으로 모니터링하는 시스템을 의미합니다. 해외에서는 일반적으로 ITIM(IT Infra Management)이라는 용어로 많이 사용되고 있지만, 국내에서는 EMS라는 용어로 통용되고 있습니다. EMS는 IT인프라의 데이터를 실시간으로 수집 및 분석할 뿐만 아니라, 수집된 데이터를 활용해 비즈니스의 가치를 창출할 수 있습니다. 글로벌 IT분야 연구자문 기업인 “가트너(Gartner)”에서는 ITIM, 즉 EMS를 데이터센터, Edge, IaaS(Infrastructure as a Service), PaaS(Platform as a Service) 등에 존재하는 IT인프라 구성요소의 상태와 리소스 사용률을 수집하는 도구로 정의하며, 컨테이너, 가상화시스템, 서버, 스토리지, 데이터베이스, 라우터, 네트워크 스위치 등에 대한 실시간 모니터링이 가능해야 한다고 서술합니다. <사진 설명: 가트너의 ITIM 정의를 도식화한 그림> 이러한 EMS는 초기에는 기업 전산실에 물리적인 형태로 존재하는 서버, 네트워크의 리소스관리를 중심으로 모니터링해 왔습니다. 서버의 CPU, Memory 등의 리소스 정보를 수집하거나, 네트워크 장비의 트래픽 정보를 모니터링하고 임계치를 기반으로 이벤트 감지하는 역할이 대부분이었으며, 이 정도 수준에서도 충분한 IT 인프라 관리가 이뤄질 수 있었습니다. 그러나 가상화(Virtualization)라는 개념이 생겨나고 다양한 IT 인프라들이 기업 전산실에서 클라우드(Cloud) 환경으로 전환됨에 따라, EMS의 모니터링 분야도 조금씩 바뀌어 가고 있습니다. 많은 기업들이 효율적인 리소스 사용과 비용 절감을 목표로 VMware와 같은 가상화 시스템을 도입해 운영하게 됐으며, 모니터링 부문도 이에 대응하기 위해 가상화 리소스에 대한 관리 영역으로 확장됐습니다. 가상화 환경을 이루는 하이퍼바이저(Hypervisor)와 가상머신(Virtual Machine)의 연관성을 추적하고, 각 가상머신들이 사용하고 있는 리소스를 실시간으로 분석해 효율적인 자원 배분, 즉 프로비저닝(Provisioning)을 위한 근거 데이터를 제공할 수 있도록 하고 있습니다. 더 나아가 VMware, Hyper-V 등의 다양한 가상화 플랫폼에서 가상머신을 생성하고 삭제하고, 실제로 가상머신에 CPU, Memory 등과 같은 리소스를 할당해 줄 수 있는 컨트롤 영역까지 제공하는 제품을 개발하는 벤더사들이 많아지고 있습니다. 이러한 가상화 기술을 기반으로 현대에는 IT 인프라들이 대부분 클라우드 환경으로 전환하고 있는 추세입니다. 클라우드 환경으로의 전환 클라우드(Cloud)란, 언제 어디서나 필요한 컴퓨팅 자원을 필요한 시간만큼 인터넷을 통해 활용할 수 있는 컴퓨팅 방식으로, 최근 기업들은 각자의 목적과 상황에 맞게 AWS, MS Azure와 같은 Public Cloud 및 OpenStack, Nutanix 등을 활용한 Private Cloud 등의 환경으로 기업의 전산설비들을 마이그레이션 하고 있습니다. 클라우드로의 전환과 기술의 발전에 따라, EMS의 IT 인프라 모니터링은 더 이상 *On-Premise 환경에서의 접근이 아닌, Cloud 환경, 특히 MSA(Micro Service Architecture)를 기반으로 하는 클라우드 네이티브(Cloud Native) 관점에서의 IT 운영 관리라는 새로운 접근이 필요하게 됐습니다. (*On-Premise : 기업이 서버를 클라우드 환경이 아닌 자체 설비로 보유하고 운영하는 형태) 클라우드 네이티브란, 클라우드 기반 구성요소를 클라우드 환경에 최적화된 방식으로 조립하기 위한 아키텍처로서, 마이크로서비스 기반의 개발환경, 그리고 컨테이너 중심의 애플리케이션 구동환경 위주의 클라우드를 의미합니다. 클라우드 네이티브는 IT비즈니스의 신속성을 위해 도커(Docker)와 같은 컨테이너를 기반으로 애플리케이션이 운영되므로, EMS는 컨테이너의 성능, 로그, 프로세스 및 파일시스템 등 세부적인 관찰과 이상징후를 판단할 수 있는 기능들이 요구되고 있습니다. 자사 제품인 Zenius SMS에서는 이러한 변화에 따라 Docker에 대한 모니터링 기능을 기본적으로 제공하고 있습니다. Docker 컨테이너가 생성되면 자동으로 관리대상으로 등록되며, Up/Down 뿐만 아니라, CPU, Memory, Network 및 Process의 정보를 실시간으로 모니터링하고 발생되는 로그들을 통합관리 할 수 있도록 합니다. <사진 설명: Zenius-SMS에서 제공하고 있는 Docker 컨테이너 모니터링 기능> 또, 복원력과 탄력성을 위해 쿠버네티스와 같은 오케스트레이션 도구를 활용해 컨테이너를 스핀업하고, 예상되는 성능에 맞게 효율적으로 리소스를 맵핑하고 있으며, 이러한 기술에 대응하기 위해 EMS는 쿠버네티스(Kubernetes), 도커스웜(Docker Swarm) 등의 오케스트레이터들의 동작여부를 직관적으로 관찰하는 제품들이 지속적으로 출시되고 있는 상황입니다. 이와 더불어 컨테이너, 오케스트레이터의 동적 연결관계를 실시간으로 모니터링하고, 파드(POD), 클러스터, 호스트 및 애플리케이션의 관계를 표현하는 역할의 중요성이 점차 커져가고 있습니다. 통합 모니터링(Monitoring) EMS 모니터링의 또 다른 변화로는 통합(Integration)의 역할이 더더욱 강해지고 있다는 것입니다. IT 서비스가 복잡해지고 다양해짐에 따라 IT 인프라의 관리 범위도 점차 증가하면서, 다양한 IT 인프라들을 융합하고 관리하기 위한 노력들이 관찰되고 있습니다. 데이터독(Datadog), 스플렁크(SPLUNK)와 같은 장비 관점의 모니터링 벤더들은 APM과 같은 애플리케이션 모니터링 시장으로, 앱다이나믹스(AppDynamics), 다이나트레이스(Dynatrace), 뉴렐릭(NewRelic)과 같은 애플리케이션 모니터링 시장의 강자들은 인프라 장비 관점의 모니터링 시장으로의 융합이 확인되고 있습니다. 자사 제품인 Zenius 역시 서버, 네트워크 중심의 관리에서 애플리케이션, 데이터베이스 등의 시장으로 관리 범위를 확장해 나가고 있는 추세입니다. IT 서비스의 영속성을 유지하기 위해서는 IT 서비스를 구성하는 다양한 요소들을 실시간으로 모니터링하고 연관관계를 추적해 문제 원인을 찾아내는 것이 중요하기 때문에 다양한 IT 요소들을 통합적으로 모니터링하는 것 뿐만 아니라, 상호 연관관계를 표현하고 추적할 수 있는 기능들이 지속적으로 요구되고 있습니다. 모니터링의 트렌드는 서버, 네트워크 등의 독립적인 개체에 대한 모니터링 아닌 IT 서비스를 중심으로 기반 요소들을 모두 통합적으로 모니터링하고, 각 상호간의 의존성과 영향도를 파악해 RCA(Root Cause Analysis) 분석을 가능하게 하고 이를 통해 IT 서비스의 연속성을 보장할 수 있는 통찰력을 확보하게끔 하는 방향으로 흘러가고 있습니다. Zenius는 서버, 네트워크, 애플리케이션, 데이터베이스 및 각종 로그들의 정보를 시각적으로 통합 모니터링할 수 있는 오버뷰(Overview) 도구와 IT 서비스 레벨에서 인프라들의 연관관계를 정의하고 다양한 조건(Rule)에 따라 서비스 이상유무와 원인분석이 가능한 서비스 맵(Service Map) 도구를 기본적으로 제공하고 있습니다. <사진 설명: Zenius 오버뷰 화면> <사진 설명: Zenius 서비스맵 화면> 앞서 언급했듯이, 클라우드 환경으로 전환함에 따라 통합적 관리 요구는 더욱 높아지고 있습니다. IT 인프라에 대한 통합 뿐만 아니라, AD(Active Directory), SAP 및 AWS, Azure, GCP 등의 다양한 서비스의 주요 지표까지 연계하고 하나의 시스템으로 통합 모니터링하기 위한 노력들이 관찰되고 있습니다. 데이터독(Datadog)의 경우, 500개 이상의 시스템, 애플리케이션 및 서비스들의 지표들을 손쉽게 통합 관리할 수 있다고 돼있습니다. <사진 설명: 데이터독 홈페이지 캡처> 이처럼 IT 서비스의 복잡성과 다양화에 따라 관리해야 될 서비스와 지표들은 점점 늘어나고 있으며, 기업의 현황에 맞게 컴포넌트 기반으로 손쉽게 지표들을 통합할 수 있는 기능과 도구들이 요구되고 있습니다. AI 기반의 예측&자동화 모니터링의 세번째 변화로는 ’AI 기반의 예측과 자동화’입니다. IT 인프라 및 서비스의 주요 지표를 모니터링하는 것도 중요하지만, 축적된 데이터를 기반으로 미래의 상황을 예측 및 이상탐지해 사전에 대비할 수 있는 체계를 갖추는 일은 모니터링 시장에서 중요한 이슈로 자리잡고 있습니다. 현재의 AIOps(AI for IT Operations)를 표방하는 모니터링 기술들은 서버, 네트워크, 애플리케이션, 데이터베이스 등의 주요 지표들을 실시간으로 수집하고, 저장된 데이터를 기반으로 AI 알고리즘 또는 통계기법을 통해 미래데이터를 예측하며 장애 발생가능성을 제공하고 있습니다. 이와 같은 기술을 통해 미래 성능 값을 예측해 IT 인프라의 증설 필요성 등을 판단하고, 장애 예측으로 크리티컬한 문제가 발생되기 전에 미리 조치를 취할 수 있도록 해 효율적인 의사결정을 할 수 있도록 합니다. Zenius도 4차 산업혁명 및 디지털 뉴딜시대가 도래함에 따라 미래예측 기능을 최신 버전에 탑재했으며, 이를 통해 IT운영자가 미래 상황에 유연하고 선제적으로 대응할 수 있도록 합니다. Zenius에서는 서버, 네트워크, 애플리케이션 등 다양한 IT 인프라의 미래 성능 값, 패턴 범위, 이상 범위 등을 예측해 IT 운영자에게 제시합니다. <사진 설명: 인공지능(AI) 기반 미래데이터 예측 화면> 다만, 인공지능 기술을 통해 장애 발생 가능성을 탐지하는 기능 외에, 어디에 문제가 발생됐는지 알려주는 기능은 모니터링 시장에 과제로 남아있고, 이를 제공하기 위한 여러 업체들의 노력이 보이고 있습니다. 이제는 EMS에서 보편적인 것이 됐지만, 모바일 기기를 통해 시∙공간적 제약 없는 모니터링이 이뤄지고 있습니다. 다양한 기종의 스마트폰, 태블릿PC 등을 이용해 운영콘솔(Console) 뿐만 아니라, 회의 등 시간을 잠시 비우더라도 IT 인프라에 대한 연속적인 모니터링이 모바일기기를 통해 가능해졌습니다. <사진 설명: 다양한 기기를 통한 모니터링>
2022.09.05
'Zenius-SIEM v2.0' GS인증 1등급 획득
'Zenius-SIEM v2.0' GS인증 1등급 획득
브레인즈컴퍼니는 지난 8월 22일 한국정보통신기술협회(TTA)로부터 Zenius-SIEM v2.0에 대한 GS인증 1등급을 획득했습니다. GS인증은 Good Software의 약자로 양질의 품질을 갖춘 SW 제품에 국가가 부여하는 인증 제도 입니다. ISO 국제표준을 기반으로 기능 적합성, 성능 효율성, 보안성 등 여러 테스트를 거쳐 결과가 우수한 제품에 인증이 부여됩니다. GS인증을 받은 제품은 공공기관 우선 구매 대상으로 지정할 수 있습니다. 이번에 GS인증 1등급을 받은 Zenius-SIEM v2.0은 다양한 대용량 로그의 수집, 분석 및 통합 관리 시스템으로, 컴플라이언스(Compliance)를 준수하고 보안 위협에 대한 감시 · 대응 체계를 수립할 수 있는 통합로그 관리 시스템입니다. CC인증에 이어 GS인증 1등급을 획득한 Zenius-SIEM v2.0은 제품의 보안성이 강화되고 안정성을 검증받아 제주특별자치도청과 한국금형산업진흥회에 구축을 완료하였습니다. Zenius-SIEM v2.0은 SaaS(Software as a Service) 형태의 서비스를 제공하기 위해 개발 중에 있으며, On-Premise와 클라우드 환경에서 더 많은 고객들이 안정적으로 대용량 로그를 관리하고 보안 환경을 유지하도록 지원할 예정입니다.
2023.08.30
다음 슬라이드 보기