반복영역 건너뛰기
주메뉴 바로가기
본문 바로가기
제품/서비스
EMS Solution
Features
클라우드 관리
AI 인공지능
서버관리
데이터베이스 관리
네트워크 관리
트래픽 관리
설비 IoT 관리
무선 AP 관리
교환기 관리
운영자동화
실시간 관리
백업 관리
APM Solution
애플리케이션 관리
URL 관리
ITSM Solution
서비스데스크
IT 서비스 관리
Big Data Solution
SIEM
Dashboard
대시보드
Consulting Service
컨설팅 서비스
고객
레퍼런스
고객FAQ
문의하기
가격
자료실
카탈로그
사용자매뉴얼
회사소개
비전·미션
연혁
2016~현재
2000~2015
인증서·수상
투자정보
재무정보
전자공고
IR자료
새소식
공고
보도자료
오시는 길
채용
피플
컬처
공고
FAQ
블로그
열기
메인 페이지로 이동
블로그
기술이야기
블로그
최신이야기
사람이야기
회사이야기
기술이야기
다양한이야기
잘파세대(Z세대 + 알파 세대)에 대한 모든 것
SMS를 통한 서버관리는 꼭 이렇게 해야만 한다?!
이화정
2024.02.22
페이스북 공유하기
트위터 공유하기
링크드인 공유하기
블로그 공유하기
네트워크 정보 수집 프로토콜의 모든 것 (SNMP, RMON, ICMP, Syslog)
Gartner에서 진행한 연구에 따르면 기업에서 서버의 다운타임이 발생할 경우, 시간당 약 748억 ~ 1,202억의 손실 비용이 발생한다고 합니다.
또한 서버 다운타임등 서버를 제대로 관리하지 못했을 경우에는, 금전적인 손실뿐 아니라 고객이탈이나 브랜드이미지 하락 등의 치명적인 손실도 입게 되죠.
따라서 올바른 서버 관리를 통해 문제를 미리 예방하고, 혹여나 문제가 발생할 경우에는 빠르게 대응할 수 있어야 합니다. 그렇다면
'올바른 서버 관리'란 정확히 무엇을 의미하는 걸까요?
ㅣ올바른 서버 관리를 위한 첫 걸음
ⓒoutsource2india
올바른 서버 관리를 위한 첫걸음은 바로 '통합 서버 관리' 도구의 도입입니다. 가장 많이 활용하는 도구가 바로 SMS(Server Management System)죠.
SMS는 복잡한 IT 인프라를 효과적으로 관리하고, 모니터링할 수 있는 해결책을 제공하여, 서버 사태를 쉽게 파악하고, 필요한 조치를 신속하게 처리할 수 있도록 도와줍니다.
SMS는 기업의 서비스 안정성과 비즈니스 연속성을 보장하는 데 필수적인 도구인 셈이죠. 최근에는 관리하는 서버의 규모와 상관없이 대부분 SMS을 사용하고 있습니다.
하지만 SMS를 도입하고 구축만 한다고 해서, 모든 과제를 해결할 수 있을까요?
ㅣSMS를 제대로 활용하는 방법
SMS를 '제대로' 활용하기 위해서는 단순한 모니터링을 넘어, 문제 발생 시 알림을 받고 이를 통해 신속하게 문제를 해결할 수 있는 적극적인 조치가 필요합니다.
적극적인 조치 중의 대표적인 예이자 서버 관리의 핵심은 바로 '감시 설정'입니다. 그렇다면 구체적으로 '감시 설정'을 통해 어떻게 서버를 관리해야 하는지, 이를 위한 SMS의 조건은 무엇인지 살펴보겠습니다.
최적화된 감시 설정 값을 간편하게 설정할 수 있어야 한다
SMS의 감시항목설정은 사용자가 기본적인 모니터링 환경을 빠르게 구축할 수 있도록 간편하게 설정할 수 있어야 합니다. 통합 서버 관리에 대한 경험이 부족한 사용자더라도, 제품을 쉽게 설정하고 사용할 수 있도록
최적화된 감시 설정 값을 제공
해야 하죠. 예를 들면 CPU 사용률이 몇% 였을 때 심각하고 위험한지를 각 항목별로 제공해야 합니다.
Zenius SMS의 경우 사용자의 OS에 따라 감시 설정 항목(CPU 사용률, MEM 사용률 등)의 심각도와 임계치 조건은 어떻게 해야 하는지 기본적인 디폴트 값을 제공합니다.
더불어서 제니우스만의 최적의 감시 설정 가이드라인을 제공하여, 복잡한 설정 과정을 거치지 않더라도 모니터링할 수 있도록 도와주죠. 물론 기업과 조직의 환경에 맞춰 감시 설정을 조정할 수 있습니다.
필수적인 감시 설정 기능을 갖추고 있어야 한다
또한 SMS의 감시 항목을 설정할 때는
필요한 주요 기능으로 구성
되어야 합니다. 사용자는 복잡한 설정 절차 없이 필요한 감시 항목을 설정해야 하고, 서버 관리에 소요되는 시간을 줄일 수 있어야 하기 때문이죠.
예를 들어 시스템의 중요한 지표(예: CPU 사용량, 메모리 사용량, 디스크 I/O 사용률)를 확인할 수 있는 감시 항목 설정이 있는지, 각 감시 항목에 대해 심각도 수준과 임계치를 설정할 수 있는지, 다양한 방식의 알림 방식 기능을 제공하는지 등을 직관적으로 확인할 수 있어야 합니다.
Zenius SMS의 경우 사용자에게 꼭 필요한 기능(감시 항목, 서버, 심각도, 임계치, 알림 설정, 복구 스크립트 등)만 집중할 수 있도록 구성되어 있습니다.
감시 항목에서는 사용 중인 OS를 설정하고, 원하는 감시 항목을 선택하여, 원하는 서버를 감시 설정 할 수도 있죠. 또한 심각도와 임계치 설정에서는 무해-주의-위험-긴급-치명 각 값에 맞게 임계치 값을 설정할 수 있습니다.
예를 들어 '긴급'이라는 항목에 80%라고 설정했는데 임계치 값이 80%를 넘어설 경우, 사용자에게 즉각적으로 알려줍니다. 또한 지속시간을 1분 발생 횟수를 1이라고 설정할 경우, 1분을 넘길 때 사용자에게 알림을 통보해 주죠.
알림 통보 서비스가 잘 갖춰져 있어야 한다
감시 항목 설정 중
알림 통보는 서버를 관리하는 데 있어 매우 중요한 기능
입니다. 서버에 문제점이 발생할 경우, 사용자에게 즉각적으로 알려줄 수 있는 장치이기 때문이죠. 또한 문제가 더 심각해지기 전에 신속하게 조치를 취할 수 있게 해주며, 시스템의 다운타임을 최소화하는 데 결정적인 역할을 합니다.
이 밖에도 알림 통보 기능에서는 사용자의 업무 환경과 선호도에 따라, 알림의 유형이나 수신자를 유연하게 선택할 수 있어야 합니다.
Zenius SMS를 예를 들어 살펴보면 감시 설정에 임계값을 초과하거나, 예상치 못한 이벤트가 발생했을 때 다양한 형태로 알림 서비스를 제공하고 있습니다. 이메일, 문자 Push App은 물론 외부 연동을 통해 슬랙이나, 카카오톡으로도 편리하게 알람을 받아볼 수 있죠.
이 밖에도 알림의 임계값과 조건, 적용 시간이나 요일, 알림을 받을 사용자도 별도로 지정할 수 있습니다.
자동화 복구스크립트 기능을 제공해야 한다
서버에 문제가 감지되었을 때는 알림 통보 기능뿐만 아니라,
사전에 정의된 스크립트를 자동으로 실행하여 문제를 신속하게 해결
할 수 있어야 합니다. 예를 들어 데이터베이스 서버의 응답 지연이 감지될 때 '캐시를 클리어하고 서비스를 재시작해 줘!'라는 스크립트 실행을 통해 즉각적으로 문제를 해결할 수 있어야 하죠.
이러한 자동화 복구스크립트 기능은 사용자가 알림을 받고 대응하기까지의 시간을 대폭 줄여줄 수 있고, 이에 따라 시스템 다운타임을 최소화할 수 있습니다. 또한 반복적이거나 단순한 문제 해결 과정을 자동화함으로써, 더 중요한 작업에 집중할 수 있겠죠.
위에 언급한 내용을 Zenius SMS를 통해 살펴보면, 장비에 장애가 발생할 경우 즉시 복구스크립트가 구동되어 문제를 자동적으로 해결할 수 있게 합니다.
예를 들어 A 서버에 임계치를 80%로 설정한 후, 복구스크립트를 통해 'C라는 방법으로 조치를 취해줘!'라고 미리 설정할 경우 자동적으로 문제를 해결할 수 있죠. 이러한 자동화 복구스크립트 기능은 수백 혹은 수천 대의 서버와 장비를 효율적으로 관리할 수 있어, 관리 부담을 줄이는 데 매우 효과적입니다.
또한 '정상 복구 시 통보' 옵션을 설정하면, 복구 스크립트가 완료됨에 따라 알림 통보를 사용자에게 재차 알려줍니다. 이 과정을 통해 사용자는 만족도와 제품에 대한 신뢰도를 높일 수 있겠죠.
감시 항목들을 한눈에 관리할 수 있어야 한다
이젠 앞에서 감시 설정하고 등록했던 감시 항목들을 모니터링할 수 있어야 하겠죠? 이때 중요한 점은
필수적인 감시 항목은 보여주되, UI는 단순화
해야 한다는 점입니다. 이는 주요 감시 항목의 상태를 신속하게 파악하고, 문제가 발생했을 때 즉각적으로 대응하기 위해서죠.
또한 감시 항목 상태를 색상 코드(예: 녹색은 정상, 노란색은 경고, 빨간색은 심각)와 아이콘으로 구분하여, 사용자가 감시 항목의 상황을 즉각적으로 인식할 수 있도록 해야 합니다.
Zenius SMS의 경우 주요 감시 항목들의 현황을 통합적으로 모니터링할 수 있습니다. 불필요한 항목들을 줄이고 핵심적인 항목들만 선별하여, 서버의 감시 항목을 신속하게 모니터링할 수 있죠.
감시 현황은 직관적인 UI가 중요한 만큼, 심각도 현황(정상-무해-주의-위험-긴급-치명)을 색상으로 구분하여 문제가 생겼을 때 신속하게 대응할 수 있도록 구성하였습니다. 또한 사용자의 환경에 맞춰 필수적인 감시 항목을 쉽게 선택하여 모니터링할 수 있습니다.
이 밖에도 많은 서버의 감시 항목을 관리하다 보면, 중요한 감시 항목을 추가하지 못한 상황이 발생할 수 있는데요. 최악의 경우에는 막대한 손실 비용 발생 등의 심각한 결과를 초래할 수 있겠죠.
이에 따라 감시 현황은 더더욱 직관적으로 모니터링할 수 있어야 합니다. 주요한 감시 항목을 실수로 설정하지 않더라도, 신속하게 파악하고 등록하여 대처할 수 있기 때문이죠. Zenius SMS는 감시 설정해 둔 항목 수가 예상과 다를 경우(예: 만약 관리하는 서버에 감시 항목이 2건이어야 하는데 → 1건으로 표기된 경우) 미등록 건 감시 항목을 조회하여 등록할 수 있습니다.
주요 감시 항목을 설정하고 동작여부에 '미등록' 항목으로 검색하면, 감시 설정하지 않은 항목을 조회할 수 있죠. 이처럼 Zenius SMS은 자칫 놓칠 수 있는 주요 감시 항목도 신속하게 찾아 등록할 수 있습니다.
。。。。。。。。。。。。
지금까지 살펴본 것처럼 Zenius와 같은 SMS를 통해서
서버를 한눈에 모니터링하고, 감시 설정 기능을 통해 체계적으로 관리하며, 문제 발생 시 다양한 알림과 자동화된 복구스크립트로 문제점을 신속히 해결
해야 합니다. Zenius SMS 대규모 서버자원을 관리하고 있는 한 고객사 관계자의 말씀으로 이 글을 마무리하려고 합니다.
"이 많은 서버의 감시 항목들을 휴일 없이 24시간 동안 지켜볼 수는 없잖아요. 그래서 서버를 통합 관리할 수 있는 Zenius SMS을 도입했죠. 이용하면서 좋았던 점은 감시 현황 페이지를 통해 한눈에 감시 항목을 관리할 수 있어 편리하다는 점이에요.
감시 설정을 걸어둔 항목들이 많아 종종 등록을 못한 경우가 발생해도, 직관적으로 확인하고 감시 항목을 추가할 수 있어요. 특히 복구 스크립트 기능을 애용하는 편인데요. 서버에 장애가 발생했을 때 복구 스크립트를 미리 걸어두면, 장비에 장애가 발생해도 신속하게 문제 해결을 할 수 있어 매우 만족스럽습니다!"
#SMS
#서버
#서버관리
#서버모니터링
#Zenius
#ZeniusSMS
#통합서버관리
이화정
프리세일즈팀
프리세일즈팀에서 마케팅, 내외부 홍보, 콘텐츠 제작을 담당하고 있어요.
필진 글 더보기
목록으로
추천 콘텐츠
이전 슬라이드 보기
카프카를 통한 로그 관리 방법
카프카를 통한 로그 관리 방법
안녕하세요! 저는 개발4그룹에서 제니우스(Zenius) SIEM의 로그 관리 기능 개발을 담당하고 있는 김채욱 입니다. 제가 하고 있는 일은 실시간으로 대용량 로그 데이터를 수집하여 분석 후, 사용자에게 가치 있는 정보를 시각화하여 보여주는 일입니다. 이번 글에서 다룰 내용은 1) 그동안 로그(Log)에 대해 조사한 것과 2) 최근에 CCDAK 카프카 자격증을 딴 기념으로, 카프카(Kafka)를 이용하여 어떻게 로그 관리를 하는지에 대해 이야기해 보겠습니다. PART1. 로그 1. 로그의 표면적 형태 로그(Log)는 기본적으로 시스템의 일련된 동작이나 사건의 기록입니다. 시스템의 일기장과도 같죠. 로그를 통해 특정 시간에 시스템에서 ‘어떤 일’이 일어났는지 파악할 수도 있습니다. 이렇게 로그는 시간에 따른 시스템의 동작을 기록하고, 정보는 순차적으로 저장됩니다. 이처럼 로그의 핵심 개념은 ‘시간’입니다. 순차적으로 발생된 로그를 통해 시스템의 동작을 이해하며, 일종의 생활기록부 역할을 하죠. 시스템 내에서 어떤 행동이 발생하였고, 어떤 문제가 일어났으며, 유저와의 어떤 교류가 일어났는지 모두 알 수 있습니다. 만약 시간의 개념이 없다면 어떻게 될까요? 발생한 모든 일들이 뒤섞이며, 로그 해석을 하는데 어려움이 생기겠죠. 이처럼 로그를 통해 시스템은 과거의 변화를 추적합니다. 똑같은 상황이 주어지면 항상 같은 결과를 내놓는 ‘결정론적’인 동작을 보장할 수 있죠. 로그의 중요성, 이제 조금 이해가 되실까요? 2. 로그와 카프카의 관계 자, 그렇다면! 로그(Log)와 카프카(Kafka)는 어떤 관계일까요? 우선 카프카는 분산 스트리밍 플랫폼으로서, 실시간으로 대용량의 데이터를 처리하고 전송하는데 탁월한 성능을 자랑합니다. 그 중심에는 바로 ‘로그’라는 개념이 있는데요. 좀 더 자세히 짚고 넘어가 보겠습니다. 3. 카프카에서의 로그 시스템 카프카에서의 로그 시스템은, 단순히 시스템의 에러나 이벤트를 기록하는 것만이 아닙니다. 연속된 데이터 레코드들의 스트림을 의미하며, 이를 ‘토픽(Topic)’이라는 카테고리로 구분하죠. 각 토픽은 다시 *파티션(Partition)으로 나누어, 단일 혹은 여러 서버에 분산 저장됩니다. 이렇게 분산 저장되는 로그 데이터는, 높은 내구성과 가용성을 보장합니다. *파티션(Partition): 하드디스크를 논리적으로 나눈 구역 4. 카프카가 로그를 사용하는 이유 로그의 순차적인 특성은 카프카의 ‘핵심 아키텍처’와 깊게 연결되어 있습니다. 로그를 사용하면, 데이터의 순서를 보장할 수 있어 대용량의 데이터 스트림을 효율적으로 처리할 수 있기 때문이죠. 데이터를 ‘영구적’으로 저장할 수 있어, 데이터 손실 위험 또한 크게 줄어듭니다. 로그를 사용하는 또 다른 이유는 ‘장애 복구’입니다. 서버가 장애로 인해 중단되었다가 다시 시작되면, 저장된 로그를 이용하여 이전 상태로 복구할 수 있게 되죠. 이는 ‘카프카가 높은 가용성’을 보장하는 데 중요한 요소입니다. ∴ 로그 요약 로그는 단순한 시스템 메시지를 넘어 ‘데이터 스트림’의 핵심 요소로 활용됩니다. 카프카와 같은 현대의 데이터 처리 시스템은 로그의 이러한 특성을 극대화하여, 대용량의 실시간 데이터 스트림을 효율적으로 처리할 수 있는 거죠. 로그의 중요성을 다시 한번 깨닫게 되는 순간이네요! PART2. 카프카 로그에 이어 에 대해 설명하겠습니다. 들어가기에 앞서 가볍게 ‘구조’부터 알아가 볼까요? 1. 카프카 구조 · 브로커(Broker) 브로커는 *클러스터(Cluster) 안에 구성된 여러 서버 중 각 서버를 의미합니다. 이러한 브로커들은, 레코드 형태인 메시지 데이터의 저장과 검색 및 컨슈머에게 전달하고 관리합니다. *클러스터(Cluster): 여러 대의 컴퓨터들이 연결되어 하나의 시스템처럼 동작하는 컴퓨터들의 집합 데이터 분배와 중복성도 촉진합니다. 브로커에 문제가 발생하면, 데이터가 여러 브로커에 데이터가 복제되어 데이터 손실이 되지 않죠. · 프로듀서(Producer) 프로듀서는 토픽에 레코드를 전송 또는 생성하는 *엔터티(Entity)입니다. 카프카 생태계에서 ‘데이터의 진입점’ 역할도 함께 하고 있죠. 레코드가 전송될 토픽 및 파티션도 결정할 수 있습니다. *엔터티(Entity): 업무에 필요한 정보를 저장하고 관리하는 집합적인 것 · 컨슈머(Consumer) 컨슈머는 토픽에서 레코드를 읽습니다. 하나 이상의 토픽을 구독하고, 브로커로부터 레코드를 소비합니다. 데이터의 출구점을 나타내기도 하며, 프로듀서에 의해 전송된 메시지를 최종적으로 읽히고 처리되도록 합니다. · 토픽(Topic) 토픽은 프로듀서로부터 전송된 레코드 카테고리입니다. 각 토픽은 파티션으로 나뉘며, 이 파티션은 브로커 간에 복제됩니다. 카프카로 들어오는 데이터를 조직화하고, 분류하는 방법을 제공하기도 합니다. 파티션으로 나눔으로써 카프카는 ‘수평 확장성과 장애 허용성’을 보장합니다. · 주키퍼(ZooKeeper) 주키퍼는 브로커를 관리하고 조정하는 데 도움을 주는 ‘중앙 관리소’입니다. 클러스터 노드의 상태, 토픽 *메타데이터(Metadata) 등의 상태를 추적합니다. *메타데이터(Metadata): 데이터에 관한 구조화된 데이터로, 다른 데이터를 설명해 주는 데이터 카프카는 분산 조정을 위해 주키퍼에 의존합니다. 주키퍼는 브로커에 문제가 발생하면, 다른 브로커에 알리고 클러스터 전체에 일관된 데이터를 보장하죠. ∴ 카프카 구조 요약 요약한다면 카프카는 1) 복잡하지만 견고한 아키텍처 2) 대규모 스트림 데이터를 실시간으로 처리하는 데 있어 안정적이고 장애 허용성이 있음 3) 고도로 확장 가능한 플랫폼을 제공으로 정리할 수 있습니다. 이처럼 카프카가 큰 데이터 환경에서 ‘어떻게’ 정보 흐름을 관리하고 최적화하는지 5가지의 구조를 통해 살펴보았습니다. 이제 카프카에 대해 조금 더 명확한 그림이 그려지지 않나요? 2. 컨슈머 그룹과 성능을 위한 탐색 카프카의 가장 주목할 만한 특징 중 하나는 ‘컨슈머 그룹의 구현’입니다. 이는 카프카의 확장성과 성능 잠재력을 이해하는 데 중심적인 개념이죠. 컨슈머 그룹 이해하기 카프카의 핵심은 ‘메시지를 생산하고 소비’ 하는 것입니다. 그런데 수백만, 심지어 수십억의 메시지가 흐르고 있을 때 어떻게 효율적으로 소비될까요? 여기서 컨슈머 그룹(Consumer Group)이 등장합니다. 컨슈머 그룹은, 하나 또는 그 이상의 컨슈머로 구성되어 하나 또는 여러 토픽에서 메시지를 소비하는데 협력합니다. 그렇다면 왜 효율적인지 알아보겠습니다. · 로드 밸런싱: 하나의 컨슈머가 모든 메시지를 처리하는 대신, 그룹이 부하를 분산할 수 있습니다. 토픽의 각 파티션은 그룹 내에서 정확히 하나의 컨슈머에 의해 소비됩니다. 이는 메시지가 더 빠르고 효율적으로 처리된다는 것을 보장합니다. · 장애 허용성: 컨슈머에 문제가 발생하면, 그룹 내의 다른 컨슈머가 그 파티션을 인수하여 메시지 처리에 차질이 없도록 합니다. · 유연성: 데이터 흐름이 변함에 따라 그룹에서 컨슈머를 쉽게 추가하거나 제거합니다. 이에 따라 증가하거나 감소하는 부하를 처리할 수 있습니다. 여기까지는 최적의 성능을 위한 ‘카프카 튜닝 컨슈머 그룹의 기본 사항’을 다루었으니, 이와 관련된 ‘성능 튜닝 전략’에 대해 알아볼까요? 성능 튜닝 전략 · 파티션 전략: 토픽의 파티션 수는, 얼마나 많은 컨슈머가 활성화되어 메시지를 소비할 수 있는지 영향을 줍니다. 더 많은 파티션은 더 많은 컨슈머가 병렬로 작동할 수 있음을 의미하는 거죠. 그러나 너무 많은 파티션은 *오버헤드를 야기할 수 있습니다. *오버헤드: 어떤 처리를 하기 위해 간접적인 처리 시간 · 컨슈머 구성: *fetch.min.bytes 및 *fetch.max.wait.ms와 같은 매개변수를 조정합니다. 그다음 한 번에 얼마나 많은 데이터를 컨슈머가 가져오는지 제어합니다. 이러한 최적화를 통해 브로커에게 요청하는 횟수를 줄이고, 처리량을 높입니다. *fetch.min.bytes: 한 번에 가져올 수 있는 최소 데이터 사이즈 *fetch.max.wait.ms: 데이터가 최소 크기가 될 때까지 기다릴 시간 · 메시지 배치: 프로듀서는 메시지를 함께 배치하여 처리량을 높일 수 있게 구성됩니다. *batch.size 및 *linger.ms와 같은 매개변수를 조정하여, 대기 시간과 처리량 사이의 균형을 찾을 수 있게 되죠. *batch.size: 한 번에 모델이 학습하는 데이터 샘플의 개수 *linger.ms: 전송 대기 시간 · 압축: 카프카는 메시지 압축을 지원하여 전송 및 저장되는 데이터의 양을 줄입니다. 이로 인해 전송 속도가 빨라지고 전체 성능이 향상될 수 있습니다. · 로그 정리 정책: 카프카 토픽은, 설정된 기간 또는 크기 동안 메시지를 유지할 수 있습니다. 보존 정책을 조정하면, 브로커가 저장 공간이 부족해지는 점과 성능이 저하되는 점을 방지할 수 있습니다. 3. 컨슈머 그룹과 성능을 위한 실제 코드 예시 다음 그림과 같은 코드를 보며 조금 더 자세히 살펴보겠습니다. NodeJS 코드 중 일부를 발췌했습니다. 카프카 설치 시에 사용되는 설정 파일 *server.properties에서 파티션의 개수를 CPU 코어 수와 같게 설정하는 코드입니다. 이에 대한 장점들을 쭉 살펴볼까요? *server.properties: 마인크래프트 서버 옵션을 설정할 수 있는 파일 CPU 코어 수에 파티션 수를 맞추었을 때의 장점 · 최적화된 리소스 활용: 카프카에서는 각 파티션이 읽기와 쓰기를 위한 자체 *I/O(입출력) 스레드를 종종 운영합니다. 사용 가능한 CPU 코어 수와 파티션 수를 일치시키면, 각 코어가 특정 파티션의 I/O 작업을 처리합니다. 이 동시성은 리소스에서 최대의 성능을 추출하는 데 도움 됩니다. · 최대 병렬 처리: 카프카의 설계 철학은 ‘병렬 데이터 처리’를 중심으로 합니다. 코어 수와 파티션 수 사이의 일치는, 동시에 처리되어 처리량을 높일 수 있습니다. · 간소화된 용량 계획: 이 접근 방식은, 리소스 계획에 대한 명확한 기준을 제공합니다. 성능 병목이 발생하면 CPU에 *바인딩(Binding)되어 있는지 명확하게 알 수 있습니다. 인프라를 정확하게 조정할 수도 있게 되죠. *바인딩(Binding): 두 프로그래밍 언어를 이어주는 래퍼 라이브러리 · 오버헤드 감소: 병렬 처리와 오버헤드 사이의 균형은 미묘합니다. 파티션 증가는 병렬 처리를 촉진할 수 있습니다. 하지만 더 많은 주키퍼 부하, 브로커 시작 시간 연장, 리더 선거 빈도 증가와 같은 오버헤드도 가져올 수도 있습니다. 파티션을 CPU 코어에 맞추는 것은 균형을 이룰 수 있게 합니다. 다음은 프로세스 수를 CPU 코어 수만큼 생성하여, 토픽의 파티션 개수와 일치시킨 코드에 대한 장점입니다. 파티션 수와 컨슈머 프로세스 수 일치의 장점 · 최적의 병렬 처리: 카프카 파티션의 각각은 동시에 처리될 수 있습니다. 컨슈머 수가 파티션 수와 일치하면, 각 컨슈머는 특정 파티션에서 메시지를 독립적으로 소비할 수 있게 되죠. 따라서 병렬 처리가 향상됩니다. · 리소스 효율성: 파티션 수와 컨슈머 수가 일치하면, 각 컨슈머가 처리하는 데이터의 양이 균등하게 분배됩니다. 이로 인해 전체 시스템의 리소스 사용이 균형을 이루게 되죠. · 탄력성과 확장성: 트래픽이 증가하면, 추가적인 컨슈머를 컨슈머 그룹에 추가하여 처리 능력을 증가시킵니다. 동일한 방식으로 트래픽이 감소하면 컨슈머를 줄여 리소스를 절약할 수 있습니다. · 고가용성과 오류 회복: 컨슈머 중 하나가 실패하면, 해당 컨슈머가 처리하던 파티션은 다른 컨슈머에게 자동 재분배됩니다. 이를 통해 시스템 내의 다른 컨슈머가 실패한 컨슈머의 작업을 빠르게 인수하여, 메시지 처리가 중단되지 않습니다. 마지막으로 각 프로세스별 컨슈머를 생성해서 토픽에 구독 후, 소비하는 과정을 나타낸 소스코드입니다. ∴ 컨슈머 그룹 요약 컨슈머 그룹은 높은 처리량과 장애 허용성 있는 메시지 소비를 제공하는 능력이 핵심입니다. 카프카가 어떤 식으로 운영되는지에 대한 상세한 부분을 이해하고 다양한 매개변수를 신중하게 조정한다면, 어떠한 상황에서도 카프카의 최대 성능을 이끌어낼 수 있습니다! ------------------------------------------------------------ ©참고 자료 · Jay Kreps, “I Hearts Logs”, Confluent · 위키피디아, “Logging(computing)” · Confluent, “https://docs.confluent.io/kafka/overview.html” · Neha Narkhede, Gwen Shapira, Todd Palino, “Kafka: The Definitive Guide” ------------------------------------------------------------
2023.09.19
다음 슬라이드 보기